We investigate the extent to which pre-trained language models acquire analytical and deductive logical reasoning capabilities as a side effect of learning word prediction. We present AnaLog, a natural language inference task designed to probe models for these capabilities, controlling for different invalid heuristics the models may adopt instead of learning the desired generalisations. We test four language models on AnaLog, finding that they have all learned, to a different extent, to encode information that is predictive of entailment beyond shallow heuristics such as lexical overlap and grammaticality. We closely analyse the best performing language model and show that while it performs more consistently than other language models across logical connectives and reasoning domains, it still is sensitive to lexical and syntactic variations in the realisation of logical statements. 2 Related Work 2.1 Learning Logic from Text Recent work has explored which aspects of logical reasoning are statistically learnable from text. Examining how well LMs encode the semantics of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.