Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.
In this tutorial review we describe the recent progress on catalytic microtubular engines fabricated by rolled-up nanotech on polymers. We summarize the technical aspects of the technology and the basic principles that cause the catalytic microengines to self-propel in fuel solutions. The control over speed, directionality and interactions of the microengines to perform tasks such as cargo transportation is also discussed. We compare this technology to other fabrication techniques of catalytic micro-/nanomotors and outline challenges and opportunities for such engines in future studies. Since rolled-up nanotech on polymers can easily integrate almost any type of inorganic material, huge potential and advanced performance such as high speed, cargo delivery, motion control, and dynamic assembly are foreseen--ultimately promising a practical way to construct versatile and intelligent catalytic tubular microrobots.
Achieving control over the directionality of active colloids is essential for their use in practical applications such as cargo carriers in microfluidic devices. So far, guidance of spherical Janus colloids was mainly realized using specially engineered magnetic multilayer coatings combined with external magnetic fields. Here we demonstrate that step-like submicrometre topographical features can be used as reliable docking and guiding platforms for chemically active spherical Janus colloids. For various topographic features (stripes, squares or circular posts), docking of the colloid at the feature edge is robust and reliable. Furthermore, the colloids move along the edges for significantly long times, which systematically increase with fuel concentration. The observed phenomenology is qualitatively captured by a simple continuum model of self-diffusiophoresis near confining boundaries, indicating that the chemical activity and associated hydrodynamic interactions with the nearby topography are the main physical ingredients behind the observed behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.