The dry reforming of methane has received notable attention as a chemical process to convert natural gas into value-added chemicals and fuels. Ni-based exsolution catalysts using perovskite oxides supports have been used for their attractive sinterresistance and coke-resistance properties. The perovskite oxide in itself has unique defect chemistry that can be used to manipulate and control the properties of the catalyst nanoparticles exsolved on the surface, therefore influencing both the nanoparticle and support characteristics. In this study, the La:Fe ratio of Ni-doped LaFeO 3 was used to manipulate and control the properties of exsolved Ni-Fe alloy nanoparticles. The Ni-Fe nanoparticles consisted of different sizes ranging from 10 to 380 nm. Temperature programmed surface reaction studies along with materials characterization with SEM, STEM-HAADF, XRD, and BET showed that the Ni-Fe nanoparticles from different solid precursors have the same active sites for methane activation but differ in performance and stability because of size effects, metalsupport strength, composition and support basicity. A mechanism is proposed to decipher the merits of the Ni-Fe nanoparticles with the best activity, selectivity, and stability in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.