Transposable element activity can be harmful to the host’s genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica L.) by exploiting high-quality genome reference and related N4-methylcytosine (4mC) and N6-methyladenine (6mA) data. Overall, 1.49% of transposon nucleotides showed either 4mC or 6mA modifications: the 4mC/6mA ratio was similar in Class I and Class II transposons, with a prevalence of 4mC, which is comparable to coding genes. Different percentages of 4mC or 6mA were observed among LTR-retrotransposon lineages and sub-lineages. Furthermore, both the Copia and Gypsy retroelements showed higher modification rates in the LTR and coding regions compared with their neighbour regions. Finally, the unconventional methylation of retrotransposons is unrelated to the number of close genes, suggesting that the 4mC and 6mA frequency in LTR-retrotransposons should not be related to transcriptional repression in the adjacency of the element. In conclusion, this study highlighted unconventional DNA modification patterns in fig transposable elements. Further investigations will focus on functional implications, in regards to how modified retroelements affect the expression of neighbouring genes, and whether these epigenetic markers can spread from repeats to genes, shaping the plant phenotype.
Genome divergence by repeat proliferation and/or loss is a process that plays a crucial role in species evolution. Nevertheless, knowledge of the variability related to repeat proliferation among species of the same family is still limited. Considering the importance of the Asteraceae family, here we present a first contribution towards the metarepeatome of five Asteraceae species. A comprehensive picture of the repetitive components of all genomes was obtained by genome skimming with Illumina sequence reads and by analyzing a pool of full-length long terminal repeat retrotransposons (LTR-REs). Genome skimming allowed us to estimate the abundance and variability of repetitive components. The structure of the metagenome of the selected species was composed of 67% repetitive sequences, of which LTR-REs represented the bulk of annotated clusters. The species essentially shared ribosomal DNA sequences, whereas the other classes of repetitive DNA were highly variable among species. The pool of full-length LTR-REs was retrieved from all the species and their age of insertion was established, showing several lineage-specific proliferation peaks over the last 15-million years. Overall, a large variability of repeat abundance at superfamily, lineage, and sublineage levels was observed, indicating that repeats within individual genomes followed different evolutionary and temporal dynamics, and that different events of amplification or loss of these sequences may have occurred after species differentiation.
The sunflower (Helianthus annuus L.) is among the most widely cultivated crops in the world due to the oilseed production. Lipid transfer proteins (LTPs) are low molecular mass proteins encoded by a broad multigenic family in higher plants, showing a vast range of functions; these proteins have not been characterised in sunflower at the genomic level. In this work, we exploited the reliable genome sequence of sunflower to identify and characterise the LTP multigenic family in H. annuus. Overall, 101 sunflower putative LTP genes were identified using a homology search and the HMM algorithm. The selected sequences were characterised through phylogenetic analysis, exon–intron organisation, and protein structural motifs. Sunflower LTPs were subdivided into four clades, reflecting their genomic and structural organisation. This gene family was further investigated by analysing the possible duplication origin of genes, which showed the prevalence of tandem and whole genome duplication events, a result that is in line with polyploidisation events that occurred during sunflower genome evolution. Furthermore, LTP gene expression was evaluated on cDNA libraries constructed on six sunflower tissues (leaf, root, ligule, seed, stamen, and pistil) and from roots treated with stimuli mimicking biotic and abiotic stress. Genes encoding LTPs belonging to three out of four clades responded specifically to external stimuli, especially to abscisic acid, auxin, and the saline environment. Interestingly, genes encoding proteins belonging to one clade were expressed exclusively in sunflower seeds. This work is a first attempt of genome-wide identification and characterisation of the LTP multigenic family in a plant species.
Background Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. Results In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. Conclusions The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.
Stevia rebaudiana is one of the most important crops belonging to the Asteraceae family. Stevia is cultivated all over the world as it represents a valid natural alternative to artificial sweeteners thanks to its leaves, which produce steviol glycosides that have high sweetening power and reduced caloric value. In this work, the stevia genome sequence was used to isolate and characterise full-length long-terminal repeat retrotransposons (LTR-REs), which account for more than half of the genome. The Gypsy retrotransposons were twice as abundant as the Copia ones. A disproportionate abundance of elements belonging to the Chromovirus/Tekay lineage was observed among the Gypsy elements. Only the SIRE and Angela lineages represented significant portions of the genome among the Copia elements. The dynamics with which LTR-REs colonised the stevia genome were also estimated; all isolated full-length elements turned out to be relatively young, with a proliferation peak around 1–2 million years ago. However, a different analysis conducted by comparing sequences encoding retrotranscriptase showed the occurrence of an older period in which there was a lot of LTR-RE proliferation. Finally, a group of isolated full-length elements belonging to the lineage Angela was used to analyse the genetic variability in 25 accessions of S. rebaudiana using the Inter-Retrotransposon Amplified Polymorphism (IRAP) protocol. The obtained fingerprints highlighted a high degree of genetic variability and were used to study the genomic structures of the different accessions. It was hypothesised that there are four ancestral subpopulations at the root of the analysed accessions, which all turned out to be admixed. Overall, these data may be useful for genome sequence annotations and for evaluating genetic variability in this species, which may be useful in stevia breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.