BackgroundThere is compelling evidence that not only do anti-filarials significantly reduce larval forms, but that host immune responses also contribute to the clearance of filarial parasites; however, the underlying mechanisms have not been fully elucidated.Main textFilarial infections caused by Wuchereria bancrofti and Brugia species (lymphatic filariasis) and Onchocerca volvulus (onchocerciasis) affect almost 200 million individuals worldwide and pose major public health challenges in endemic regions. Indeed, the collective disability-adjusted life years for both infections is 3.3 million. Infections with these thread-like nematodes are chronic and, although most individuals develop a regulated state, a portion develop severe forms of pathology. Mass drug administration (MDA) programmes on endemic populations focus on reducing prevalence of people with microfilariae, the worm's offspring in the blood, to less than 1 %. Although this has been successful in some areas, studies show that MDA will be required for longer than initially conceived.ConclusionThis paper highlights the mode of action of the various antifilarial treatment strategies and role of host immune response.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0183-0) contains supplementary material, which is available to authorized users.
Background Lymphatic Filariasis (LF) is a vector-borne neglected tropical disease caused by the filarial nematode parasites that can lead to the disfiguring swelling of the limbs (lymphedema or elephantiasis for late stage) and/or genitalia (hydrocele) in men. Growing evidence suggests that not only are filarial lymphedema patients confronted with huge societal stigma and discrimination, but also experience acute filarial attacks accompanied by swelling of the affected part(s), fever, wounds and peeling of the skin of affected limbs(s). However, the extent to which seasonal variation influence filarial attacks among people with lymphedema was highly speculated without empirical evidence and was thus investigated. Methods In light of this, a cross-sectional study where 142 (70.4% females and 29.6% males) lymphedema patients were recruited from 8 established Wuchereria bancrofti endemic communities in the Ahanta West District, Ghana was carried out to investigate the prevalence and seasonal variation (rainy/wet and dry seasons) of acute filarial attacks. Chi-square test was used to test for association between frequency of attacks and seasonality. The STROBE guidelines for reporting cross-sectional studies was adopted. Results The average lymphedema leg stage was 2.37 and 2.33 for left and right legs, respectively, while mossy lesions, sores and ulcers were observed among 33.1% of patients with late stage disease (elephantiasis). It was found that 97 (68.3%) of the study participants experience filarial attacks during the wet season and 36 (25.4%) reported the incidence of filarial attacks during both seasons (wet and dry) while 9 (6.3%) of the study participants did not experience any attack at all. Conclusions Findings from the present study show compelling evidence that the frequency and the prevalence of filarial attacks is significantly increased during wet seasons compared to the dry season. Electronic supplementary material The online version of this article (10.1186/s12879-019-4084-2) contains supplementary material, which is available to authorized users.
Our understanding of immunity to filarial infection is enigmatic and continues to be passionately debated. The mechanisms whereby filarial nematodes are killed in vivo and how these parasites avoid these mechanisms are poorly understood.
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR–Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR–Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.