Abstract. Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on the flux-profile relationships for momentum, φ m , and heat, φ h . Measurements from 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) for the period from 10 to 28 September 1998 were analysed using the framework of the local-scaling approach (Nieuwstadt, 1984a;1984b), which can be interpreted as an extension of the Monin-Obukhov similarity theory (Obukhov, 1946). The results show increasing values of φ m and φ h with increasing stability parameter ζ =z/ , up to a value of ζ ≈1-2, above which the values remain constant. As a consequence of this levelling off in φ m and φ h for strong stability, the turbulent mixing is underestimated when linear similarity functions (Businger et al., 1971) are used to calculate surface fluxes of momentum and heat. On the other hand when φ m and φ h are related to the gradient Richardson number, R i , a different behaviour is found, which could indicate that the transfer of momentum is greater than that of heat for high R i . The range of validity of these linear functions is discussed in terms of the physical aspects of turbulent intermittent mixing.
During the SABLES2006 (Stable Atmospheric Boundary Layer Experiment in Spain 2006) field campaign, a gravity-wave episode was observed on the night of July 11 by the microbarometers deployed at the surface and on the 100-m tower. The high-amplitude, low-frequency periodic pressure fluctuations were very well correlated with the wind speed and direction. Data from neighbouring automatic stations showed that the gravity wave was not local, but long-lived and mesoscale. The propagation of the wave over the experimental site had significant effects on the structure of the weakly-stratified nocturnal boundary layer that developed that night: the stability increased, turbulent vertical motions were suppressed, the nocturnal low-level jet was disrupted, and periodic temperature fluctuations of amplitude up to 3-4 K were observed. In this work we analyse the different available data sources (tower data, RASS-SODAR, microbarometric, satellite imagery, automatic stations) to describe the phenomena in depth and to find a suitable explanation for the generation and propagation of the wave. The linear wave theory explains remarkably well most of the observations, and the wave parameters could be estimated by applying a wavelet-based technique to surface microbarometric measurements. We also analyse the vertical structure of the wave and find wave ducting conditions above the surface. Finally, by means of the multi-resolution flux decomposition, we analyse in detail the changes in vertical turbulent fluxes and the spectra of turbulent motions produced by the interaction between the gravity wave and the local flow.
Drainage or katabatic flows are common mesoscale circulations established as a result of differential radiative cooling of near-surface air masses in sloping terrain. The initial irruption of these flows, with sudden shifts in wind speed and direction, may result in vertical displacements of air parcels from their equilibrium position, which prove to be a common source of internal gravity waves. This paper illustrates this mechanism and describes the main features of the oscillations following the study of observational data gathered throughout one night during the Stable Atmospheric Boundary Layer Experiment in Spain 2006 (SABLES2006) field campaign. Pressure differences, measured by microbarometers set at different levels of a tower, help to interpret the evolution of other atmospheric variables, provide a detailed picture of the irruption of a drainage current, and reveal the formation of gravity waves at its top. The main parameters of the waves are derived from wavelet cross correlation of pressure time series, recorded by a surface array of microbarometers. The analysis yields, among other parameters, the horizontal component of the phase and group velocities of the gravity waves, which compare well with the velocity of irruption of the drainage current. Wavelet and other multiresolution techniques are also applied to sonic anemometer records to study the interaction between turbulence and larger-scale motions. The analysis shows evidence of heat flux divergence induced by the gravity waves, which may constitute a key factor for the vertical thermal profile in the nocturnal boundary layer (NBL) in situations of weak turbulence and important wave activity. FIG. 10. Vertical kinematic heat flux density per scale unit (K m s 22 ) at large time scales evaluated at z 5 96.6 m at different moments of the night showing wave activity. DECEMBER 2010 V I A N A E T A L .
In this study, starting from an observational case of internal gravity waves (IGWs) generated at the top of a drainage flow during the SABLES2006 field campaign, we aim to reproduce the IGWs and their origin through mesoscale meteorological modelling. We used the Weather Research and Forecast (WRF) model with fine horizontal resolution (1 km), testing the model capabilities to simulate the IGWs through a WRF fixed physics package option but two different planetary boundary layer schemes, the Mellor-Yamada-Janjić (MYJ) and the Yonsei University (YSU). The comparison between model simulations and measurements from a 100 m meteorological tower reveals that the MYJ scheme simulation gives much better results, as it better represents the main features of the density current measured by the tower instruments, although the event is predicted to occur sooner than it is observed to occur. The study has also shown the capacity of this scheme to detect the oscillations in temperature and specific humidity generated by the arrival of the density current. In contrast, the YSU scheme captures the arrival of the current on time but it fails to correctly track its properties and therefore it does not reproduce the gravity waves with the current arrival. In addition, wave parameters calculated from model outputs (MYJ) using the wavelet method reveal waves with longer periods and longer wavelengths (T = 20-22 min and λ = 8-10 km) than those calculated from measurements (T = 9.2 min and λ = 3.
Abstract. The prediction of fogs is one of the processes not well reproduced by the Numerical Weather Prediction (NWP) models. In particular, the role of turbulence in the formation or dissipation of fogs is one of the physical processed not well understood, and therefore, not well parameterized by the NWP models. Observational analysis of three different periods with fogs at the Spanish Northern Plateau has been carried out. These periods have also been simulated with the Weather Research and Forecasting (WRF) numerical model and their results have been compared to observations. The study includes a comparison of the skill of different planetary boundary layer (PBL) parameterizations, surface layer schemes and a test of the gravitational settling of clouds/fogs droplets option. A statistical analysis of this comparison has been evaluated in order to study differences between the periods and between the various parameterizations used. The model results for each PBL parameterization were different, depending on the studied period, due to differences in the features of each fog. This fact made it difficult to obtain generalized conclusions, but allowed us to determine which parameterization performed better for each case. In general, judging from the models results of liquid water content (LWC), none of the PBL schemes were able to correctly simulate the fogs, being Mellor-Yamada Nakanishi and Niino (MYNN) 2.5 level PBL scheme the best one in most of the cases. This conclusion is also supported by the root mean square error (RMSE) calculated for different meteorological variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.