A two-step "grafting from" method has been successfully carried out, which is based on the electrografting of polyacrylate chains containing an initiator for the atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) or copolymerization of TBAEMA with either monomethyl ether of poly(ethylene oxide) methacrylate (PEOMA) or acrylic acid (AA) or styrene. The chemisorption of this type of polymer brushes onto stainless steel surfaces has potential in orthopaedic surgery. These films have been characterized by ATR-FTIR, Raman spectroscopy, atomic force microscopy (AFM), and measurement of contact angles of water. The polymer formed in solution by ATRP and that one detached on purpose from the surface have been analyzed by size exclusion chromathography (SEC) and (1)H NMR spectroscopy. The strong adherence of the films onto stainless steel has been assessed by peeling tests. AFM analysis has shown that addition of hydrophilic comonomers to the grafted chains decreases the surface roughness. According to dynamic quartz crystal microbalance experiments, proteins (e.g., fibrinogen) are more effectively repelled whenever copolymer brushes contain neutral hydrophilic (PEOMA) co-units rather than negatively charged groups (PAA salt). Moreover, a 2- to 3-fold decrease in the fibrinogen adsorption is observed when TBAEMA is copolymerized with either PEOMA or AA rather than homopolymerized or copolymerized with styrene. Compared to the bare stainless steel surface, brushes of polyTBAEMA, poly(TBAEMA-co-PEOMA) and poly(TBAEMA-co-AA) decrease the bacteria adhesion by 3 to 4 orders of magnitude as revealed by Gram-positive bacteria S. aureus adhesion tests.
Novel copolymer brushes have been synthesized by a two-step "grafting from" method that consists of the electrografting of poly(2-phenyl-2-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-ethylacrylate) onto stainless steel, followed by the nitroxide-mediated radical polymerization of 2-(dimethylamino ethyl)acrylate and styrene or n-butyl acrylate, initiated from the electrografted polyacrylate chains. The grafted copolymers were quaternized in order to endow them with antibacterial properties. Peeling tests have confirmed the strong adhesion of the grafted copolymer onto the stainless steel substrate. Quartz crystal microbalance experiments have proven that fibrinogen adhesion is lower on the hydrophilic quaternized films compared to the nonionic counterpart. Such quaternized copolymers exhibit significant antibacterial activity against the Gram-positive bacteria S. aureus and the Gram-negative bacteria E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.