A plate structure of a triangular truss core sandwiched by two panels is treated as an equivalent homogeneous laminated plate by obtaining equivalent anisotropic elastic constants. The equivalent elastic constants are obtained by considering generalized Hook’s law of a three dimensional elastic body with no a priori assumption and the equilibrium of a segment deformed by bending moments. To verify the accuracy of the equivalent elastic constants, a linear static analysis of sandwiched aluminum plates subjected to lateral pressure is carried out. The results of the finite element analysis applied to the equivalent laminated plates are compared with those of a NASTRAN analysis of the original structural layouts. The results are also compared with a closed-form solution, which simplifies the sandwiched plate as a homogeneous orthotropic thick plate continuum (Lok and Cheng, 2000, “Elastic Stiffness Properties and Behavior of Truss-Core Sandwich Panel,” J. Struct. Eng., 126(5), pp. 552–559). As the maximum deflections of three analyses agreed closely, one has assurance that the method of the homogeneous plate with equivalent elastic constants is valid and useful.
A first approximation theory for the unsymmetric deformation of non- homogeneous, anisotropic, elastic cylindrical shells is derived by means of the asymptotic integration of the elasticity equations. For a homogeneous, isotropic material, the equations reduce to the Donnell equations. The appli cation to a cylinder under combined loading is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.