In the developing murine eye, melanin synthesis in the retinal pigment epithelium (RPE) coincides with neurogenesis of retinal ganglion cells (RGCs). Disruption of pigmentation in the albino RPE is associated with delayed neurogenesis in the ventrotemporal retina, the source of ipsilateral RGCs, and a reduced ipsilateral RGC projection.
To begin to unravel how melanogenesis and the RPE regulate RGC neurogenesis and cell subpopulation specification, we have compared the features of albino and pigmented mouse RPE cells during the period of RGC neurogenesis (embryonic day,E, 12.5 to 18.5) when the RPE is closely apposed to developing RGC precursors. At E12.5 and E15.5, although albino and pigmented RPE cells express RPE markers Otx2 and Mitf similarly, albino RPE cells are irregularly shaped and have fewer melanosomes compared with pigmented RPE cells. The adherens junction protein P-cadherin appears loosely distributed within the albino RPE cells rather than tightly localized on the cell membrane as in pigmented RPE. Connexin 43 (gap junction protein) is expressed in pigmented and albino RPE cells at E13.5 but at E15.5 albino RPE cells have fewer small connexin 43 puncta, and a larger fraction of phosphorylated connexin 43 at serine 368. These results suggest that the lack of pigment in the RPE results in impaired RPE cell integrity and communication via gap junctions between RPE and neural retina during RGC neurogenesis. Our findings should pave the way for further investigation of the role of RPE in regulating RGC development toward achieving a proper RGC axon decussation.
In mammalian albinism, disrupted melanogenesis in the retinal pigment epithelium (RPE) is associated with fewer retinal ganglion cells (RGCs) projecting ipsilaterally to the brain, resulting in numerous abnormalities in the retina and visual pathway, especially binocular vision. To further understand the molecular link between disrupted RPE and a reduced ipsilateral RGC projection in albinism, we compared gene expression in the embryonic albino and pigmented mouse RPE. We found that the Wnt pathway, which directs peripheral retinal differentiation and, generally, cell proliferation, is dysregulated in the albino RPE. Wnt2b expression is expanded in the albino RPE compared with the pigmented RPE, and the expanded region adjoins the site of ipsilateral RGC neurogenesis and settling. Pharmacological activation of Wnt signaling in pigmented mice by lithium (Li +) treatment in vivo reduces the number of Zic2-positive RGCs, which are normally fated to project ipsilaterally, to numbers observed in the albino retina. These results implicate Wnt signaling from the RPE to neural retina as a potential factor in the regulation of ipsilateral RGC production, and thus the albino phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.