Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use its ancestral larval host species. Using ddRAD analysis of 61210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with these evolutionary responses, and their association with demographic history and ecological variation. Gene flow appears widespread throughout the range, despite the apparently fragmented nature of the habitats used by this species. Patterns of haplotype variation between selected and neutral genomic regions suggest that evolution associated with climate adaptation is polygenic, resulting from the independent spread of existing alleles throughout the established range of this species, rather than the colonisation of pre-adapted genotypes from coastal populations. These data suggest that rapid responses to climate change do not depend on the availability of pre-adapted genotypes. Instead, the evolution of novel forms of biotic interaction in Aricia agestis has occurred during range expansion, through the assembly of novel genotypes from alleles from multiple localities.
The assembly of divergent haplotypes using noisy long-read data presents a challenge to the reconstruction of haploid genome assemblies, due to overlapping distributions of technical sequencing error, intra-locus genetic variation and inter-locus similarity within these data. Here we present a comparative analysis of assembly algorithms representing overlap-layout-consensus, repeat graph and de Brujn graph methods. We examine how post-processing strategies attempting to reduce redundant heterozygosity interact with the choice of initial assembly algorithm and ultimately produce a series of chromosome-level assemblies for an agricultural pest, the diamondback moth, Plutella xylostella (L.). We compare evaluation methods and show that BUSCO analyses may overestimate haplotig removal processing in long-read draft genomes, in comparison to a k-mer method. We discuss the trade-offs inherent in assembly algorithm and curation choices and suggest that “best practice” is research question dependent. We demonstrate a link between allelic divergence and allele-derived contig redundancy in final genome assemblies and document the patterns of coding and non-coding diversity between redundant sequences. We also document a link between an excess of non-synonymous polymorphism and haplotigs that are unresolved by assembly or post-assembly algorithms. Finally, we discuss how this phenomenon may have relevance for the usage of noisy long-read genome assemblies in comparative genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.