One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
There is an urgent unmet need for new therapeutics in acute myeloid leukemia (AML) as standard therapy has not changed in the past three decades and outcome remains poor for most patients. Sphingolipid dysregulation through decreased ceramide levels and elevated sphingosine 1-phosphate (S1P) promotes cancer cell growth and survival. Acid ceramidase (AC) catalyzes ceramide breakdown to sphingosine, the precursor for S1P. We report for the first time that AC is required for AML blast survival. Transcriptome analysis and enzymatic assay show that primary AML cells have high levels of AC expression and activity. Treatment of patient samples and cell lines with AC inhibitor LCL204 reduced viability and induced apoptosis. AC overexpression increased the expression of anti-apoptotic Mcl-1, significantly increased S1P and decreased ceramide. Conversely, LCL204 induced ceramide accumulation and decreased Mcl-1 through post-translational mechanisms. LCL204 treatment significantly increased overall survival of C57BL/6 mice engrafted with leukemic C1498 cells and significantly decreased leukemic burden in NSG mice engrafted with primary human AML cells. Collectively, these studies demonstrate that AC plays a critical role in AML survival through regulation of both sphingolipid levels and Mcl-1. We propose that AC warrants further exploration as a novel therapeutic target in AML.
Activation of the serine/threonine kinase Akt is associated with aggressive clinical behavior of prostate cancer. We found that the human prostate cancer cell lines LNCaP and PC-3 express predominantly Akt1 and Akt2. Selective down-regulation of Akt1, but not Akt2, by short-hairpin RNA reduced the viability of prostate cancer cells. In addition, structurally different Akt inhibitors were cytotoxic for the prostate cancer cells, confirming that the Akt pathway is indispensable for their viability. We have purified the tetracyclic triterpenoids 3-oxo-tirucallic acid, 3-␣-acetoxy-tirucallic acid, and 3--acetoxy-tirucallic acid from the oleogum resin of Boswellia carterii to chemical homogeneity. The acetoxy-derivatives in particular potently inhibited the activities of human recombinant Akt1 and Akt2 and of constitutively active Akt immunoprecipitated from PC-3 cells, whereas inhibitor of nuclear factor-B kinases remained unaffected. Docking data indicated that these tetracyclic triterpenoids form hydrogen bonds within the phosphatidylinositol binding pocket of the Akt pleckstrin homology domain. Accordingly, 3--acetoxy-tirucallic acid did not inhibit the activity of Akt1 lacking the pleckstrin homology domain. In the prostate cancer cell lines investigated, these compounds inhibited the phosphorylation of cellular Akt and the Akt signaling pathways, including glycogen synthase kinase-3 and BAD phosphorylation, nuclear accumulation of p65, the androgen receptor, -catenin, and cMyc. These events culminated in the induction of apoptosis in prostate cancer, but not in nontumorigenic cells. The tirucallic acid derivatives inhibited proliferation and induced apoptosis in tumors xenografted onto chick chorioallantoic membranes and decreased the growth of pre-established prostate tumors in nude mice without overt systemic toxicity. Thus, tirucallic acid derivatives represent a new class of Akt inhibitors with antitumor properties.
Tamoxifen, a triphenylethylene antiestrogen and one of the first-line endocrine therapies used to treat estrogen receptor-positive breast cancer, has a number of interesting, off-target effects, and among these is the inhibition of sphingolipid metabolism. More specifically, tamoxifen inhibits ceramide glycosylation, and enzymatic step that can adventitiously support the influential tumor-suppressor properties of ceramide, the aliphatic backbone of sphingolipids. Additionally, tamoxifen and metabolites N-desmethyltamoxifen and 4-hydroxytamoxifen, have been shown to inhibit ceramide hydrolysis by the enzyme acid ceramidase. This particular intervention slows ceramide destruction and thereby depresses formation of sphingosine 1-phosphate, a mitogenic sphingolipid with cancer growth-promoting properties. As ceramide-centric therapies are becoming appealing clinical interventions in the treatment of cancer, agents like tamoxifen that can retard the generation of mitogenic sphingolipids and buffer ceramide clearance via inhibition of glycosylation, take on new importance. In this review, we present an abridged, lay introduction to sphingolipid metabolism, briefly chronicle tamoxifen’s history in the clinic, examine studies that demonstrate the impact of triphenylethylenes on sphingolipid metabolism in cancer cells, and canvass works relevant to the use of tamoxifen as adjuvant to drive ceramide-centric therapies in cancer treatment. The objective is to inform the readership of what could be a novel, off-label indication of tamoxifen and structurally-related triphenylethylenes, an indication divorced from estrogen receptor status and one with application in drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.