Theoretical analysis and finite element method were used to simulate the cold nosing process of commercial purity Aluminum tubes into conical and hemispherical dies. The influences of process parameters, namely initial tube wall thickness, conical semi-die angle and coefficient of friction were investigated. The results of the nosing process were obtained in terms of load-displacement curves, thickness distribution of deformed parts, the nosing ratios and strain distributions. According to these finding, the final shape and defects of the product can also be predicted. Experimental work was carried out to verify the simulation results. A new developed setup design was proposed to improve the product quality. Two adjacent punches were used: one with a front plunger and the other was an outer sleeve to constrain the tube. It could be observed that the load increase with increasing the tube wall thickness, semi die angle and coefficient of friction. The nosing ratio increases as wall thickness increases. Comparison between analytical and FE predictions to the experimental results showed good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.