The recent availability of large-scale data combining multiple data modalities has opened various research and commercial opportunities in Artificial Intelligence (AI). Machine Learning (ML) has achieved important results in this area mostly by adopting a sub-symbolic distributed representation. It is generally accepted now that such purely sub-symbolic approaches can be data inefficient and struggle at extrapolation and reasoning. By contrast, symbolic AI is based on rich, high-level representations ideally based on human-readable symbols. Despite being more explainable and having success at reasoning, symbolic AI usually struggles when faced with incomplete knowledge or inaccurate, large data sets and combinatorial knowledge. Neurosymbolic AI attempts to benefit from the strengths of both approaches combining reasoning with complex representation of knowledge and efficient learning from multiple data modalities. Hence, neurosymbolic AI seeks to ground rich knowledge into efficient sub-symbolic representations and to explain sub-symbolic representations and deep learning by offering high-level symbolic descriptions for such learning systems. Logic Tensor Networks (LTN) are a neurosymbolic AI system for querying, learning and reasoning with rich data and abstract knowledge. LTN introduces Real Logic, a fully differentiable first-order language with concrete semantics such that every symbolic expression has an interpretation that is grounded onto real numbers in the domain. In particular, LTN converts Real Logic formulas into computational graphs that enable gradient-based optimization. This chapter presents the LTN framework and illustrates its use on knowledge completion tasks to ground the relational predicates (symbols) into a concrete interpretation (vectors and tensors). It then investigates the use of LTN on semi-supervised learning, learning of embeddings and reasoning. LTN has been applied recently to many important AI tasks, including semantic image interpretation, ontology learning and reasoning, and reinforcement learning, which use LTN for supervised classification, data clustering, semi-supervised learning, embedding learning, reasoning and query answering. The chapter presents some of the main recent applications of LTN before analyzing results in the context of related work and discussing the next steps for neurosymbolic AI and LTN-based AI models.
Recent research has attempted to predict our perception of odorants using Machine Learning models. The featurization of the olfactory stimuli usually represents the odorants using molecular structure parameters, molecular fingerprints, mass spectra, or e-nose signals. However, the impact of the choice of featurization on predictive performance remains poorly reported in direct comparative studies. This paper experiments with different sensory features for several olfactory perception tasks. We investigate the multilabel classification of aroma molecules in odor descriptors. We investigate single-label classification not only in fine-grained odor descriptors (‘orange’, ‘waxy’, etc.), but also in odor descriptor groups. We created a database of odor vectors for 114 aroma molecules to conduct our experiments using a QCM (Quartz Crystal Microbalance) type smell sensor module (Aroma Coder®V2 Set). We compare these smell features with different baseline features to evaluate the cluster composition, considering the frequencies of the top odor descriptors carried by the aroma molecules. Experimental results suggest a statistically significant better performance of the QCM type smell sensor module compared with other baseline features with F1 evaluation metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.