Although abscisic acid (ABA) and ethylene have antagonistic functions in the control of plant growth and development, including seed germination and early seedling development, it remains unknown whether a convergent point exists between these two signaling pathways or whether they operate in parallel in Arabidopsis thaliana. To elucidate this issue, four ethylene mutants, ctr1, ein2, ein3, and ein6, were crossed with aba2 (also known as gin1-3) to generate double mutants. Genetic epistasis analysis revealed that all of the resulting double mutants displayed aba2 mutant phenotypes with a small plant size and wiltiness when grown in soil or on agar plates. Further ethylene sensitivity or triple response analyses demonstrated that these double mutants also retained the ctr1 or ein mutant phenotypes, showing ethylene constitutive triple and insensitive responses, respectively. Our current data therefore demonstrate that ABA and ethylene act in parallel, at least in primary signal transduction pathways. Moreover, by microarray analysis we found that an ACC oxidase (ACO) was significantly upregulated in the aba2 mutant, whereas the 9-CIS-EP-OXYCAROTENOID DIOXYGENASE 3 (NCED3) gene in ein2 was upregulated, and both the ABSCISIC ACID INSENSITIVE1 (ABI1) and cytochrome P450, family 707, subfamily A, polypeptide 2 (CYP707A2) genes in etr1-1 were downregulated. These data further suggest that ABA and ethylene may control the hormonal biosynthesis, catabolism, or signaling of each other to enhance their antagonistic effects upon seed germination and early seedling growth.
Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mM NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2Tb-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.
Although N-acetylglucosamine-1-P uridylyltransferase (GlcNAc1pUT) that catalyzes the final step of the hexosamine biosynthetic pathway and is conserved among, organisms, produces UDP-N-acetylglucosamine (UDP-GlcNAc), an essential sugar moiety involved in protein glycosylation and structural polymers, its biological function in plants remains unknown. In this study, two GlcNA.UT genes were characterized in Arabidopsis thaliana. The single mutants glcna.ut1 and glcna.ut2 revealed no obvious phenotype, but their homozygous double mutant was lethal, reflecting the functional redundancy of these genes in being essential for plant growth. Mutant plants, GlcNA.UT1/glcna.ut1 glcna.ut2/ glcna.ut2, obtained from an F2-segregating population following reciprocal crosses of glcna.ut1 with glcna.ut2, displayed shorter siliques and fewer seed sets combined with impaired pollen viability and unfertilized ovules. Genetic analyses further demonstrated that the progeny of the GlcNA.UT1/glcna.ut1 glcna.ut2/glcna.ut2 mutant plants, but not those of the glcna.ut1/glcna.ut1 GlcNA.UT2/glcna.ut2 mutant plants, suffer from the aberrant transmission of (glcna.ut1 glcna.ut2) gametes. In parallel, cell biology analyses revealed a substantial defect in male gametophytes appearing during the late vacuolated or pollen mitosis I stages and that the female gametophyte is arrested during the uninucleate embryo sac stage in GlcNA.UT1/glcna.ut1 glcna.ut2/glcna.ut2 mutant plants. Nevertheless, although the glcna.ut1/glcna.ut1 GlcNA.UT2/glcna.ut2 mutant plants exhibited a normal transmission of (glcna.ut1 glcna.ut2) gametes and gametophytic development, the development of numerous embryos was arrested during the early globular stage within the embryo sacs. Collectively, despite having overlapping functions, the GlcNA.UT genes play an indispensable role in the unique mediation of gametogenesis and embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.