A systematic method is employed for the design and analysis of a small size eddy current (EC) displacement sensor. Simulations are first performed to determine the optimal winding structure and dimensions of the sensor. A linear-fitting approach is then developed for converting the AC displacement signal of the sensor to a DC signal. Finally, a compensation method is proposed for mitigating the temperature drift of the EC sensor under different working temperatures. The experimental results show that the proposed sensor has a sensitivity of approximately 3 μm, a working temperature range of 25–55 °C, and a linearity of ±1.025%.
Permanent magnet synchronous motors (PMSMs) are the main source of power in modern machine tools and are required to generate a high torque over a wide speed range in order to improve manufacturing efficiency. This study sets out to optimize the rotor design of a PMSM with a rated power, rated speed, rated torque and maximum speed of 34 kW, 2250 rpm, 144.3 N·m and 11250 rpm, respectively. A multi-objective optimization algorithm is employed to determine the rotor design parameters which maximize the output torque of the PMSM over three different load conditions (no load, rated load and maximum speed load). ANSYS multi-physics simulations are conducted to examine the electromagnetic, the structural field, temperature/flow field, demagnetization parament analysis and map analysis of global characteristics of the optimized PMSM. In general, the results show that the optimized PMSM provides a high torque and high-speed expansion performance, and thus facilitates a wide range of applications from low-speed heavy cutting to high-speed cutting without the need to replace the motor or machine tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.