Image captioning is a popular topic in the domains of computer vision and natural language processing (NLP). Recent advancements in deep learning (DL) models have enabled the improvement of the overall performance of the image captioning approach. This study develops a metaheuristic optimization with a deep learning-enabled automated image captioning technique (MODLE-AICT). The proposed MODLE-AICT model focuses on the generation of effective captions to the input images by using two processes involving encoding unit and decoding unit. Initially, at the encoding part, the salp swarm algorithm (SSA), with a HybridNet model, is utilized to generate effectual input image representation using fixed-length vectors, showing the novelty of the work. Moreover, the decoding part includes a bidirectional gated recurrent unit (BiGRU) model used to generate descriptive sentences. The inclusion of an SSA-based hyperparameter optimizer helps in attaining effectual performance. For inspecting the enhanced performance of the MODLE-AICT model, a series of simulations were carried out, and the results are examined under several aspects. The experimental values suggested the betterment of the MODLE-AICT model over recent approaches.
Drone developments, especially small-sized drones, usher in novel trends and possibilities in various domains. Drones offer navigational inter-location services with the involvement of the Internet of Things (IoT). On the other hand, drone networks are highly prone to privacy and security risks owing to their strategy flaws. In order to achieve the desired efficiency, it is essential to create a secure network. The purpose of the current study is to have an overview of the privacy and security problems that recently impacted the Internet of Drones (IoD). An Intrusion Detection System (IDS) is an effective approach to determine the presence of intrusions in the IoD environment. The current study focuses on the design of Crystal Structure Optimization with Deep-Autoencoder-based Intrusion Detection (CSODAE-ID) for a secure IoD environment. The aim of the presented CSODAE-ID model is to identify the occurrences of intrusions in IoD environment. In the proposed CSODAE-ID model, a new Modified Deer Hunting Optimization-based Feature Selection (MDHO-FS) technique is applied to choose the feature subsets. At the same time, the Autoencoder (AE) method is employed for the classification of intrusions in the IoD environment. The CSO algorithm, inspired by the formation of crystal structures based on the lattice points, is employed at last for the hyperparameter-tuning process. To validate the enhanced performance of the proposed CSODAE-ID model, multiple simulation analyses were performed and the outcomes were assessed under distinct aspects. The comparative study outcomes demonstrate the superiority of the proposed CSODAE-ID model over the existing techniques.
The latest advancements in Internet of Things (IoT) have revolutionized the productivity of global shipping industry in the recent years. It also led to the emergence of IoT-enabled Maritime Transportation Systems (MTS). These approaches detect the malware in network before the execution process. Various machine learning (ML) models have been proposed and designed in literature for effective malware detection. However, the existence of numerous features in the data bring dimensionality problem which can be only resolved by the use of feature selection approaches. Therefore, the current research work presents Intelligent Metaheuristics-based Feature Selection model with Optimal ML approach for Malware Detection (IMFSOML-MD) on IoT-enabled MTS. Primarily, IMFSOML-MD technique involves the design of Quantum Invasive Weed Optimization Algorithm-based Feature Selection technique to optimally choose a subset of features. Moreover, an Optimal Wavelet Neural Network (OWNN) model is employed to perform classification process. The initial parameters of WNN model are optimally tuned with the help of Colliding Bodies Optimization algorithm thereby improving the detection performance. The proposed IMFSOML-MD technique was experimentally validated using publicly-available CICMalDroid2020 dataset. The results from extensive comparative analysis demonstrated the superiority of the proposed IMFSOML-MD technique over other compared methods in terms of detection performance with maximum accuracy of 98.96%.
The Internet of Things (IoT) offers a new era of connectivity, which goes beyond laptops and smart connected devices for connected vehicles, smart homes, smart cities, and connected healthcare. The massive quantity of data gathered from numerous IoT devices poses security and privacy concerns for users. With the increasing use of multimedia in communications, the content security of remote-sensing images attracted much attention in academia and industry. Image encryption is important for securing remote sensing images in the IoT environment. Recently, researchers have introduced plenty of algorithms for encrypting images. This study introduces an Improved Sine Cosine Algorithm with Chaotic Encryption based Remote Sensing Image Encryption (ISCACE-RSI) technique in IoT Environment. The proposed model follows a three-stage process, namely pre-processing, encryption, and optimal key generation. The remote sensing images were preprocessed at the initial stage to enhance the image quality. Next, the ISCACE-RSI technique exploits the double-layer remote sensing image encryption (DLRSIE) algorithm for encrypting the images. The DLRSIE methodology incorporates the design of Chaotic Maps and deoxyribonucleic acid (DNA) Strand Displacement (DNASD) approach. The chaotic map is employed for generating pseudorandom sequences and implementing routine scrambling and diffusion processes on the plaintext images. Then, the study presents three DNASD-related encryption rules based on the variety of DNASD, and those rules are applied for encrypting the images at the DNA sequence level. For an optimal key generation of the DLRSIE technique, the ISCA is applied with an objective function of the maximization of peak signal to noise ratio (PSNR). To examine the performance of the ISCACE-RSI model, a detailed set of simulations were conducted. The comparative study reported the better performance of the ISCACE-RSI model over other existing approaches.
Breast cancer is the second most dominant kind of cancer among women. Breast Ultrasound images (BUI) are commonly employed for the detection and classification of abnormalities that exist in the breast. The ultrasound images are necessary to develop artificial intelligence (AI) enabled diagnostic support technologies. For improving the detection performance, Computer Aided Diagnosis (CAD) models are useful for breast cancer detection and classification. The current advancement of the deep learning (DL) model enables the detection and classification of breast cancer with the use of biomedical images. With this motivation, this article presents an Aquila Optimizer with Bayesian Neural Network for Breast Cancer Detection (AOBNN-BDNN) model on BUI. The presented AOBNN-BDNN model follows a series of processes to detect and classify breast cancer on BUI. To accomplish this, the AOBNN-BDNN model initially employs Wiener filtering (WF) related noise removal and U-Net segmentation as a pre-processing step. Besides, the SqueezeNet model derives a collection of feature vectors from the pre-processed image. Next, the BNN algorithm will be utilized to allocate appropriate class labels to the input images. Finally, the AO technique was exploited to fine-tune the parameters related to the BNN method so that the classification performance is improved. To validate the enhanced performance of the AOBNN-BDNN method, a wide experimental study is executed on benchmark datasets. A wide-ranging experimental analysis specified the enhancements of the AOBNN-BDNN method in recent techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.