We report a comparison of sensors’ performance of different hybrid nanomaterial architectures modifying an indium tin oxide (ITO) electrode surface. Diazonium salts and gold nanoparticles (AuNPs) were used as building units to design hybrid thin films of successive layers on the ITO electrode surface. Different architectures of hybrid thin films were prepared and characterized with different techniques, such as TEM, FEG-SEM, XPS, and EIS. The prepared electrodes were used to fabricate sensors for heavy metal detection and their performances were investigated using the square wave voltammetry (SWV) method. The comparison of the obtained results shows that the deposition of AuNPs on the ITO surface, and their subsequent functionalization by diazonium salt, is the best performing architecture achieving a high sensitivity in terms of the lower detection limit of pico molar.
In this work, different cationic surfactants with various aliphatic and aromatic ammonium cations were used to prepare inhibitor coatings and were characterized by different techniques such as IR spectroscopy and NMR. The inhibitor coatings were prepared by electrografting on the steel surface and their anticorrosion properties were evaluated in different media (HCl, H2SO4 and NaCl solutions). The electrochemical potentiodynamic polarization technique was used to study the inhibition efficiency of the prepared coatings. The dependence of the wetting properties of the electrografted layer and its homogeneity on the molecular structure of the prepared surfactants was studied. Particular attention was paid to the relationship between the properties of these surfactants in terms of critical micellar concentration, packing and wetting, and the anti-corrosion efficiency of their coatings. In this paper, we discuss the synergistic inhibition effect and the anticorrosion efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.