A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
We conducted the current analysis to determine the potential role of polio vaccination in the context of the spread of COVID-19. Data were extracted from the World Health Organization’s (WHO) Global Health Observatory data repository regarding the polio immunization coverage estimates and correlated to the overall morbidity and mortality for COVID-19 among different countries. Data were analyzed using R software version 4.0.2. Mean and standard deviation were used to represent continuous variables while we used frequencies and percentages to represent categorical variables. The Kruskal-Wallis H test was used for continuous variables since they were not normally distributed. Moreover, the Spearman rank correlation coefficient (rho) was used to determine the relationship between different variables. There was a significantly positive correlation between the vaccine coverage (%) and both of total cases per one million populations (rho = 0.37; p-value < 0.001) and deaths per one million populations (rho = 0.30; p-value < 0.001). Moreover, there was a significant correlation between different income groups and each of vaccine coverage (%) (rho = 0.71; p-value < 0.001), total cases per one million populations (rho = 0.50; p-value < 0.001), and deaths per one million populations (rho = 0.39; p-value < 0.001). All claims regarding the possible protective effect of Polio vaccination do not have any support when analyzing the related data. Polio vaccination efforts should be limited to eradicate the disease from endemic countries; however, there is no evidence to support the immunization with live-attenuated vaccines for the protection against COVID-19.
We conducted the current analysis to determine the potential role of polio vaccination in the context of the spread of COVID-19. Data were extracted from the World Health Organization's (WHO) Global Health Observatory data repository regarding the polio immunization coverage estimates and correlated to the overall morbidity and mortality for COVID-19 among different countries. Data were analyzed using R software version 4.0.2. Mean and standard deviation were used to represent continuous variables while we used frequencies and percentages to represent categorical variables. The Kruskal-Wallis H test was used for continuous variables since they were not normally distributed. Moreover, the Spearman rank correlation coefficient (rho) was used to determine the relationship between different variables. There was a significantly positive correlation between the vaccine coverage (%) and both of total cases per one million populations (rho = 0.37; p-value < 0.001) and deaths per one million populations (rho = 0.30; p-value < 0.001). Moreover, there was a significant correlation between different income groups and each of vaccine coverage (%) (rho = 0.71; p-value < 0.001), total cases per one million populations (rho = 0.50; p-value < 0.001), and deaths per one million populations (rho = 0.39; p-value < 0.001). All claims regarding the possible protective effect of Polio vaccination do not have any support when analyzing the related data. Polio vaccination efforts should be limited to eradicate the disease from endemic countries; however, there is no evidence to support the immunization with live-attenuated vaccines for the protection against COVID-19.
In te rnation a l J o u rn al of Dr u g D e ve lopm e n t a n d Re sea rc h In e e n n t t
We conducted the current analysis to determine the potential role of measles vaccination in the context of the spread of COVID-19. Data were extracted from the World Health Organization’s (WHO) Global Health Observatory data repository about the measles immunization coverage estimates and correlated to overall morbidity and mortality for COVID-19 among different countries. Data were statistically analyzed to calculate the Spearman rank correlation coefficient (rho). There was a significant positive correlation between the vaccine coverage (%) and new cases per one million populations (rho = 0.24; p-value = 0.025); however, this correlation was absent in deaths per one million populations (rho = 0.17; p-value = 0.124). On further analysis of the effect of first reported year of vaccination policy, there was no significant correlation with both of total cases per one million populations (rho = 0.11; p-value = 0.327) and deaths per one million populations (rho = −0.02; p-value = 0.829). Claims regarding the possible protective effect of measles vaccination seem to be doubtful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.