The ever increasing demand for electricity and the rapid increase in the number of automatic electrical appliances have posed a critical energy management challenge for both utilities and consumers. Substantial work has been reported on the Home Energy Management System (HEMS) but to the best of our knowledge, there is no single review highlighting all recent and past developments on Demand Side Management (DSM) and HEMS altogether. The purpose of each study is to raise user comfort, load scheduling, energy minimization, or economic dispatch problem. Researchers have proposed different soft computing and optimization techniques to address the challenge, but still it seems to be a pressing issue. This paper presents a comprehensive review of research on DSM strategies to identify the challenging perspectives for future study. We have described DSM strategies, their deployment and communication technologies. The application of soft computing techniques such as Fuzzy Logic (FL), Artificial Neural Network (ANN), and Evolutionary Computation (EC) is discussed to deal with energy consumption minimization and scheduling problems. Different optimization-based DSM approaches are also reviewed. We have also reviewed the practical aspects of DSM implementation for smart energy management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.