The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.
Grewia asiatica L. fruit natively called phalsa is a popular berry of Pakistan and widely consumed in the form of fresh juices and carbonated drinks in the summer season. The berry is enriched with antioxidants such as phenols, flavonoids, anthocyanins, and vitamin C. Scientifically, it is the least explored berry in terms of neuromodulatory activities, and therefore, in the designed study, chronically fed rats with the different dilutions (5%−30%) of fruit juice were subjected to behavioral assessment for anxiety, depression, and cognition (spatial memory) followed by biochemical analysis of isolated brains. Results revealed a prominent impact of 20 and 30% dilutions of fruit exudate as treated animals showed anxiolytic behavior to central zone (P < 0.05) of open field test (OFT) and open arms of elevated plus maze (EPM) (P < 0.05) in anxiety models. Overall, immobility of rats treated with a higher concentration of exudate in forced swim test (FST) was reduced (P < 0.05) presenting antidepressant-like activity. Moreover, in learning and memory experimental models, the treated animals reversed scopolamine-induced amnesic effects as evident from improved step-through latencies (P < 0.05 vs. scopolamine; passive avoidance test), spontaneous alternation behavior (P < 0.05 vs. scopolamine; Y-maze test), discrimination index (P < 0.05 vs. scopolamine; novel object recognition test), and escape latencies (P < 0.05 vs. scopolamine; Morris water maze). Biochemical studies of isolated brains from treated rats demonstrated significantly elevated levels of superoxide dismutase and glutathione peroxidase (P < 0.05), whereas levels of acetylcholinesterase and malondialdehyde level (P < 0.05) were reduced, indicating its potential to reduce oxidative damage in the brain and modulation with the cholinergic system. The outcomes of studies support the benefits of phytoconstituents possessed by G. asiatica fruit in the amelioration of neurological disorders that could be due to their antioxidative capacity or due to interaction with GABAergic, serotonergic, and cholinergic systems in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.