Previous studies have shown that Pseudomonas fluorescens and its lipopolysaccharide (LPS) exert dose-related cytotoxic effects on neurons and glial cells. In the present work, we investigated the time course effect of P. fluorescens MF37 and its LPS on cultured rat cerebellar granule neurons. The kinetics of binding of P. fluorescens to cerebellar granule neurons is rapid and reaches a mean of 3 bacteria/cell after 5 h. As demonstrated by measurement of the concentration of nitrite in the culture medium, P. fluorescens induces a rapid stimulation (3 h) of the nitric oxide synthase (NOS) activity of the cells. In contrast, LPS extracted from P. fluorescens requires a long lag phase (24 h) before observation of an activation of NOS. Measurement of the membrane resting potential of granule neurons showed that within 3 h of incubation there was no difference of effect between the action of P. fluorescens and that of its endotoxin. Two complementary approaches allowed to demonstrate that P. fluorescens MF37 presents a rapid invasive behaviour suggesting a mobilisation of calcium in its early steps of action. The present study reveals that P. fluorescens induces the sequential activation of a constitutive calcium-dependent NOS and that of an inducible NOS activated by LPS. Our results also suggest that in P. fluorescens cytotoxicity and invasion are not mutually exclusive events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.