The link between nutrition and autism spectrum disorder (ASD) as a neurodevelopmental condition, which is clinically presented as significant delays or deviations in interaction and communication, has provided a fresh point of view and signals that nutrition may play a role in the etiology of ASD, as well as playing an effective role in treatment by improving symptoms. In this study, 36 male albino rat pups were used. They were randomly divided into five groups. The control group was fed only a standard diet and water for the 30 days of the experiment. The second group, which served as a propionic acid (PPA)-induced rodent model of ASD, received orally administered PPA (250 mg/kg body weight (BW)) for 3 days, followed by feeding with a standard diet until the end of the experiment. The three other groups were given PPA (250 mg/kg body weight (BW)) for 3 days and then fed a standard diet and orally administered yogurt (3 mL/kg BW/day), artichokes (400 mL/kg BW/day), and a combination of Lacticaseibacillus rhamnosus GG at 0.2 mL daily (1 × 109 CFU; as the probiotic of yogurt) and luteolin (50 mg/kg BW/day; as the major antioxidant and anti-inflammatory ingredient of artichokes) for 27 days. Biochemical markers, including gamma-aminobutyric acid (GABA), reduced glutathione (GSH), glutathione peroxidase (GPx1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10), were measured in brain homogenates in all groups. The data showed that while PPA demonstrated oxidative stress and neuroinflammation in the treated rats, yogurt, Lacticaseibacillus rhamnosus GG as a probiotic, and luteolin as a prebiotic ingredient in artichokes were effective in alleviating the biochemical features of ASD. In conclusion, nutritional supplementation seems to be a promising intervention strategy for ASD. A combined dietary approach using pro- and prebiotics resulted in significant amelioration of most of the measured variables, suggesting that multiple interventions might be more relevant for the improvement of biochemical autistic features, as well as psychological traits. Prospective controlled trials are needed before recommendations can be made regarding the ideal ASD diet.
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.
The essential oil and macroelemental composition of different parts of flower bud (petal, choke, and heart) of Cynara scolymus L. were explored and compared using gas chromatography mass spectrometry (GC-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Overall, 62 organic components were detected in the flower bud based on mass spectra characteristics and retention indices. The essential oil extracted from the petals, choke, and bud showed the presence of thirty-one, twenty-one, and twenty-one compounds, respectively, with linoleic acid and palmitic acid as the major components. 21 components were identified in the oil of the petals, comprising 94.45% of the total oil, in which linoleic acid methyl ester, palmitic acid methyl ester, octadecanoic acid methyl ester, O-α-d-glucopyranoside, and heptyl oct-3-yl ester were the major constituents. Twenty-one compounds, representing 89.13% of the total oil, were detected in the choke oil. Linoleic acid methyl ester, palmitic acid methyl ester, and 2-methyl-1-hexadecanol were the main components. However, the edible heart oil contains twenty compounds, comprising 86.84% of the total oil. Cyclopropane butanoic acid, linoleic acid, methyl ester, and palmitic acid were the major constituents. The analysis executed by ICP-MS revealed the presence of significant amounts of various inorganic elements in all the three samples. The extracted essential oils were tested for antibacterial, antioxidant, and anticancer activities. The results showed that the oil extracted from the petals of C. scolymus flower bud displayed the highest antibacterial, antioxidant, anti-inflammatory, and anticancer effects, as compared to choke and heart oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.