Spheroids and organoids are important novel players in medical and life science research. They are gradually replacing two-dimensional (2D) cell cultures. Indeed, three-dimensional (3D) cultures are closer to the in vivo reality and open promising perspectives for academic research, drug screening, and personalized medicine. A large variety of cells and tissues, including tumor cells, can be the starting material for the generation of 3D cultures, including primary tissues, stem cells, or cell lines. A panoply of methods has been developed to generate 3D structures, including spontaneous or forced cell aggregation, air–liquid interface conditions, low cell attachment supports, magnetic levitation, and scaffold-based technologies. The choice of the most appropriate method depends on (i) the origin of the tissue, (ii) the presence or absence of a disease, and (iii) the intended application. This review summarizes methods and approaches for the generation of cancer spheroids and organoids, including their advantages and limitations. We also highlight some of the challenges and unresolved issues in the field of cancer spheroids and organoids, and discuss possible therapeutic applications.
Autologous fat transplantation is a widely used procedure for surgical reconstruction of tissues. The resorption rate of this transplantation remains high and unpredictable, reinforcing the need of adjuvant treatments that increase the long‐term stability of grafts. Adipose‐derived stem cells (ASC) introduced as single cells in fat has been shown clinically to reduce the resorption of fat grafts. On the other hand, the formulation of ASC into cell spheroids results in the enhancement of their regenerative potential. In this study, we developed a novel method to produce highly homogeneous ASC spheroids and characterized their features and efficacy on fat transplantation. Spheroids conserved ASC markers and multipotency. A regenerative gene expression profile was maintained, and genes linked to autophagy were upregulated whereas proliferation was decreased. Their secreted proteome was enriched in comparison with single‐cell ASC suspension. Addition of spheroids to fat graft in an animal model of transplantation resulted in a better graft long‐term stability when compared to single ASC suspension. In conclusion, we provide a novel method to manufacture homogenous ASC spheroids. These ASC spheroids are superior to ASC in single‐cell suspension to improve the stability of fat transplants, reinforcing their potential in reconstructive surgery.
Oral pathologies can cause athletic underperformance. The aim of this study was to determine the effect of malocclusion on maximal aerobic capacity in young athletes with the same anthropometric data, diet, training mode, and intensity from the same athletics training center. Sub-elite track and field athletes (middle-distance runners) with malocclusion (experimental group (EG); n = 37; 21 girls; age: 15.1 ± 1.5 years) and without malocclusion (control group (CG); n = 13; 5 girls; age: 14.7 ± 1.9 years) volunteered to participate in this study. Participants received an oral diagnosis to examine malocclusion, which was defined as an overlapping of teeth that resulted in impaired contact between the teeth of the mandible and the teeth of the upper jaw. Maximal aerobic capacity was assessed using the VAMEVAL test (calculated MAS and estimated VO2max). The test consisted of baseline values that included the following parameters: maximum aerobic speed (MAS), maximal oxygen uptake (VO2max), heart rate frequency, systolic (SAP) and diastolic arterial pressure (DAP), blood lactate concentration (LBP), and post-exercise blood lactate assessment (LAP) after the performance of the VAMEVAL test. There were no statistically significant differences between the two study groups related to either anthropometric data (age: EG = 15.1 ± 1.5 vs. CC = 14.7 ± 1.9 years (p = 0.46); BMI: EG = 19.25 ± 1.9 vs. CC = 19.42 ± 1.7 kg/m2 (p = 0.76)) or for the following physical fitness parameters and biomarkers: MAS: EG = 15.5 (14.5–16.5) vs. CG = 15.5 (15–17) km/h (p = 0.47); VO2max: EG = 54.2 (52.5–58.6) vs. CG = 54.2 (53.4–59.5) mL/kg/min (p = 0.62) (IQR (Q1–Q3)); heart rate before the physical test: EG = 77.1 ± 9.9 vs. CG = 74.3 ± 14.0 bpm (p = 0.43); SAP: EG = 106.6 ± 13.4 vs. CG = 106.2 ± 14.8 mmHg (p = 0.91); DAP: EG = 66.7 ± 9.1 vs. CG = 63.9 ± 10.2 mmHg (p = 0.36); LBP: EG = 1.5 ± 0.4 vs. CG = 1.3 ± 0.4 mmol/L (p = 0.12); and LAP: EG = 4.5 ± 2.36 vs. CG = 4.06 ± 3.04 mmol/L (p = 0.60). Our study suggests that dental malocclusion does not impede maximal aerobic capacity and the athletic performance of young track and field athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.