The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, such as the fact that each B cell contains a distinct antibody sequence encoded in its genome, that the antibody repertoire is not constant but changes over time, and the high similarity between antibody sequences. We have addressed this challenge by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire and measure age and antigen related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals’ repertoires shows that elderly subjects have a decreased number of lineages but an increased pre-vaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system’s clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects.
During seasonal influenza epidemics, disease burden is shouldered predominantly by the very young and the elderly. Elderly individuals are particularly affected, in part because vaccine efficacy wanes with age. This has been linked to a reduced ability to induce a robust serum antibody response. Here, we show that this is due to reduced quantities of vaccine-specific antibodies, rather than a lack of antibody avidity or affinity. We measured levels of vaccine-specific plasmablasts by ELISPOT 1 week after immunization of young and elderly adults with inactivated seasonal influenza vaccine. Plasmablast-derived polyclonal antibodies (PPAbs) were generated from bulk-cultured B cells, while recombinant monoclonal antibodies (re-mAbs) were produced from single plasmablasts. The frequency of vaccine-specific plasmablasts and the concentration of PPAbs were lower in the elderly than in young adults, whereas the yields of secreted IgG per plasmablast were not different. Differences were not detected in the overall vaccine-specific avidity or affinity of PPAbs and re-mAbs between the 2 age groups. In contrast, reactivity of the antibodies induced by the inactivated seasonal influenza vaccine toward the 2009 pandemic H1N1 virus, which was not present in the vaccine, was higher in the elderly than in the young. These results indicate that the inferior antibody response to influenza vaccination in the elderly is primarily due to reduced quantities of vaccine-specific antibodies. They also suggest that exposure history affects the cross-reactivity of vaccination-induced antibodies.
Identification of individual major genes affecting quantitative traits in livestock species has been limited to date. By using a candidate gene approach and a divergent breed cross involving the Chinese Meishan pig, we have shown that a specific allele of the estrogen receptor (ER) locus is associated with increased litter size. Female pigs from synthetic lines with a 50% Meishan background that were homozygous for this beneficial allele produced 2.3 more pigs in first parities and 1.5 more pigs averaged over all parities than females from the same synthetic lines and homozygous for the undesirable allele. This beneficial ER allele was also found in pigs with Large White breed ancestory. Analysis of females with Large White breed background showed an advantage for females homozygous for the beneficial allele as compared to females homozygous for the other allele of more than 1 total pig born. Analyses of growth performance test records detected no significant unfavorable associations of the beneficial allele with growth and developmental traits. Mapping of the ER gene demonstrated that the closest known genes or markers were 3 centimorgans from ER. To our knowledge, one of these, superoxide dismutase gene (SOD2), was mapped for the first time in the pig. Analysis of ER and these linked markers indicated that ER is the best predictor of litter size differences. Introgression of the beneficial allele into commercial pig breeding lines, in which the allele was not present, and marker-assisted selection for the beneficial allele in lines with Meishan and Large White background have begun.
Cellular immune responses to influenza virus infection and influenza virus vaccination have not been rigorously characterized.We quantified the effector and memory B-cell responses in children and adults after administration of either live attenuated (LAIV) or inactivated (TIV) influenza virus vaccines and compared these to antibody responses. Peripheral blood mononuclear cells were collected at days 0, 7 to 12, and 27 to 42 after immunization of younger children (6 months to 4 years old), older children (5 to 9 years old), and adults. Influenza virus-specific effector immunoglobulin A (IgA) and IgG circulating antibody-secreting cells (ASC) and stimulated memory B cells were detected using an enzyme-linked immunospot assay. Circulating influenza virus-specific IgG and IgA ASC were detected 7 to 12 days after TIV and after LAIV immunization. Seventynine percent or more of adults and older children had demonstrable IgG ASC responses, while IgA ASC responses were detected in 29 to 53% of the subjects. The IgG ASC response rate to LAIV immunization in adults was significantly higher than the response rate measured by standard serum antibody assays (26.3% and 15.8% by neutralization and hemagglutination inhibition assays, respectively). IgG ASC and serum antibody responses were relatively low in the younger children compared to older children and adults. TIV, but not LAIV, significantly increased the percentage of circulating influenza virus-specific memory B cells detected at 27 to 42 days after immunization in children and adults. In conclusion, although both influenza vaccines are effective, we found significant differences in the B-cell and antibody responses elicited after LAIV or TIV immunization in adults and older children and between young children and older age groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.