<p>A Brain-Computer Interface (BCI) provides an alternative communication interface between the human brain and a computer. The Electroencephalogram (EEG) signals are acquired, processed and machine learning algorithms are further applied to extract useful information. During EEG acquisition, artifacts are induced due to involuntary eye movements or eye blink, casting adverse effects on system performance. The aim of this research is to predict eye states from EEG signals using Deep learning architectures and present improved classifier models. Recent studies reflect that Deep Neural Networks are trending state of the art Machine learning approaches. Therefore, the current work presents the implementation of Deep Belief Network (DBN) and Stacked AutoEncoders (SAE) as Classifiers with encouraging performance accuracy. One of the designed SAE models outperforms the performance of DBN and the models presented in existing research by an impressive error rate of 1.1% on the test set bearing accuracy of 98.9%. The findings in this study, may provide a contribution towards the state of the art performance on the problem of EEG based eye state classification.</p>
Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 “You Only Look Once” object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life.
Abstract-Nowadays, Internet of Things (IoT) is receiving a great attention due to its potential strength and ability to be integrated into any complex system. The IoT provides the acquired data from the environment to the Internet through the service providers. This further helps users to view the numerical or plotted data. In addition, it also allows objects which are located in long distances to be sensed and controlled remotely through embedded devices which are important in agriculture domain. Developing such a system for the IoT is a very complex task due to the diverse variety of devices, link layer technologies, and services. This paper proposes a practical approach to acquiring data of temperature, humidity and soil moisture of plants. In order to accomplish this, we developed a prototype device and an android application which acquires physical data and sends it to cloud. Moreover, in the subsequent part of current research work, we have focused towards a temperature forecasting application. Forecasting metrological parameters have a profound influence on crop growth, development and yields of agriculture. In response to this fact, an application is developed for 10 days ahead maximum and minimum temperatures forecasting using a type of recurrent neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.