Aims This study aimed to make a comparison between the clinical laboratory-related factors, complete blood count (CBC) indices, cytokines, and lymphocyte subsets in order to distinguish severe coronavirus disease 2019 (COVID-19) cases from the non-severe ones. Materials and methods Relevant studies were searched in PubMed, Embase, Scopus, and Web of Science databases until March 31, 2020. Cochrane's Q test and the I 2 statistic were used to determine heterogeneity. We used the random-effect models to pool the weighted mean differences (WMDs) and 95% confidence intervals (CIs). Key findings Out of a total of 8557 initial records, 44 articles (50 studies) with 7865 patients (ranging from 13 to 1582), were included. Our meta-analyses with random-effect models showed a significant decrease in lymphocytes, monocyte, CD4+ T cells, CD8+ T cells, CD3 cells, CD19 cells, and natural killer (NK) cells and an increase in the white blood cell (WBC), neutrophils, neutrophil to lymphocyte ratio (NLR), C-reactive protein (CRP)/hs-CRP, erythrocyte sedimentation rate (ESR), ferritin, procalcitonin (PCT), and serum amyloid A (SAA), interleukin-2 (IL-2), IL-2R, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (INF-γ) in the severe group compared to the non-severe group. However, no significant differences were found in IL-1β, IL-17, and CD4/CD8 T cell ratio between the two groups. Significance Decrease in total lymphocytes and lymphocyte subsets as well as the elevation of CRP, ESR, SAA, PCT, ferritin, and cytokines, but not IL-1β and IL-17, were closely associated with COVID-19 severity, implying reliable indicators of severe COVID-19.
Pesticides are classified into several groups based on their structure, including fungicides, insecticides, herbicides, bactericides, and rodenticides. Pesticides are toxic to both humans and pests. For pest control, a very small amount of pesticides reach their target pests. Therefore, nearly all pesticides move through the environment and exert adverse effects on beneficial biota and public health. These chemicals pollute the water, soil, and atmosphere of the ecosystem. Agricultural workers in greenhouses and open fields, exterminators of house pests, and workers in the pesticide industry are occupationally exposed to pesticides. Pesticide exposure in the general population primarily happens through the consumption of food and water contaminated with pesticide residues; however, substantial exposure can also occur outside or inside the house. Currently, intelligent, responsive, biodegradable, and biocompatible materials have attracted considerable interest for the formulation of green, safe, and efficient pesticides. It was indicated that utilizing nanotechnology to design and prepare targeted pesticides with an environmentally responsive controlled release via chemical modifications and compounds offers great potential for creating new formulations. Furthermore, biopesticides include microbial pesticides, which are naturally happening biochemical pesticides. In addition, pesticidal substances generated by plants with added genetic materials, i.e., plant-incorporated protectants (PIPs), have emerged. Based on the foregoing evidence, various types of pesticides are summarized in this review for the first time. Here, new pesticides including nano-pesticides and biopesticides are discussed while focusing on the most recent findings on targeted and safe nano-formulated biopesticides and nano-pesticides. Graphical Abstract
D614G is one of the most reported mutations in the spike protein of SARS-COV-2 that has altered some crucial characteristics of coronaviruses, such as rate of infection and binding affinities. The binding affinity of different antiviral drugs was evaluated using rigid molecular docking. The reliability of the docking results was evaluated with the induced-fit docking method, and a better understanding of the drug-protein interactions was performed using molecular dynamics simulation. The results show that the D614G variant could change the binding affinity of antiviral drugs and spike protein remarkably. Although Cytarabine showed an appropriate interaction with the wild spike protein, Ribavirin and PMEG diphosphate exhibited a significant binding affinity to the mutated spike protein. The parameters of the ADME/T analysis showed that these drugs are suitable for further in-vitro and in-vivo investigation. D614G alteration affected the binding affinity of the RBD and its receptor on the cell surface. Supplementary Information The online version contains supplementary material available at 10.1007/s00284-022-02921-6.
Glioblastoma is the most common and destructive brain tumor with increasing complexity. Flavonoids are versatile natural compounds with the approved anticancer activity, which could be considered as a potential treatment for glioblastoma. A quantitative structure‐activity relationship (QSAR) can provide adequate data for understanding the role of flavonoids structure against glioblastoma. The IC50 of various flavonoids for the U‐87 cell line was used to prepare an adequate three‐dimensional QSAR (3D‐QSAR) model. The validation of the model was carried out using some statistical parameters such as R2 and Q2. Based on the QSAR model, the activities of other marketed and newly designed flavonoids were predicted. Molecular docking study and molecular dynamics (MD) simulation were conducted for better recognition of the interactions between the most active compounds and Bcl‐2 family proteins. Moreover, an AMDE/T analysis was performed for the most active flavonoids. A reliable 3D‐QSAR was performed with R2 and Q2 of 0.91 and 0.82. The molecular docking study revealed that BCL‐XL has a higher binding affinity with the most active compounds, and the MD simulation showed that some residues of the BH3 domain, such as Phe97, Tyr101, Arg102, and Phe105 create remarkable hydrophobic interactions with the ligands. ADME/T analysis also showed the potential of the active compounds for further investigation. 3D‐QSAR study is a beneficial method to evaluate and design anticancer compounds. Considering the results of the molecular docking study, MD simulation, and ADME/T analysis, the designed compound 54 could be considered as a potential treatment for glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.