Phosphorus (P) is the second most important macronutrient that limits the plant growth, development and productivity. Inorganic P fertilization in podzol soils predominantly bound with aluminum and iron, thereby reducing its availability to crop plants. Dairy manure (DM) amendment to agricultural soils can improve physiochemical properties, nutrient cycling through enhanced enzyme and soil microbial activities leading to improved P bioavailability to crops. We hypothesized that DM amendment in podzol soil will improve biochemical attributes and microbial community and abundance in silage corn cropping system under boreal climate. We evaluated the effects of organic and inorganic P amendments on soil biochemical attributes and abundance in podzol soil under boreal climate. Additionally, biochemical attributes and microbial population and abundance under short-term silage corn monocropping system was also investigated. Experimental treatments were [P0 (control); P1: DM with high P2O5; P2: DM with low P2O5; P3: inorganic P and five silage-corn genotypes (Fusion RR, Yukon R, A4177G3RIB, DKC 23-17RIB and DKC 26-28RIB) were laid out in a randomized complete block design in factorial settings with three replications. Results showed that P1 treatment increased acid phosphatase (AP-ase) activity (29% and 44%), and soil available P (SAP) (60% and 39%) compared to control treatment, during 2016 and 2017, respectively. Additionally, P1 treatments significantly increased total bacterial phospholipids fatty acids (ΣB-PLFA), total phospholipids fatty acids (ΣPLFA), fungi, and eukaryotes compared to control and inorganic P. Yukon R and DKC 26-28RIB genotypes exhibited higher total bacterial PLFA, fungi, and total PLFA in their rhizospheres compared to the other genotypes. Redundancy analyses showed promising association between P1 and P2 amendment, biochemical attributes and active microbial population and Yukon R and DKC 26-28RIB genotypes. Pearson correlation also demonstrated significant and positive correlation between AP-ase, SAP and gram negative bacteria (G−), fungi, ΣB-PLFA, and total PLFA. Study results demonstrated that P1 treatment enhanced biochemical attributes, active microbial community composition and abundance and forage production of silage corn. Results further demonstrated higher active microbial population and abundance in rhizosphere of Yukon R and DKC 26-28RIB genotypes. Therefore, we argue that dairy manure amendment with high P2O5 in podzol soils could be a sustainable nutrient source to enhance soil quality, health and forage production of silage corn. Yukon R and DKC 26-28RIB genotypes showed superior agronomic performance, therefore, could be good fit under boreal climatic conditions.
Drought stress affects not only crop growth but also its morpho‐physiological and biochemical traits to reduce crop productivity. The study reported in this article was designed and implemented to determine the effects of deficit irrigation and bacterial inoculation on flax plants. For this purpose, seeds were inoculated with Bacillus amyloliquefaciens (B1), Bacillus sp. Strain1 (B2), and Azotobacter chroococcum (A) as plant growth promoting rhizobacteria (PGPR). The individual inoculated plants were then grown under field conditions in 2015, while individually and in combination in pots in 2016. The irrigation regimes in either experiments included 50, 75 and 100% crop water requirement. Bacterial cultures were observed to produce ammonia (except B2), indole acetic acid and siderophores. Results showed that the PGPRs significantly mitigated the effects of water deficit. Compared with the control plants, the bacterially‐inoculated plants had an enhanced relative water content, plant height, water‐soluble carbohydrate and proline contents and antioxidant enzyme activities, but a decreased malondialdehyde content. B1 exhibited greater effects on most of the traits investigated under the field conditions rather than those with moderate and severe drought stress, while application of the triple bacteria in pots had greater effects on relative water content, carbohydrate and proline contents as well as malondialdehyde. The significant differences in abiotic stress indicators in PGPR‐treated plants suggest that these bacteria could be used as biofertilizers to assist plant growth and to reduce the adverse effects of deficit irrigation.
Aim The present research was conducted to investigate the effect of plant growth‐promoting rhizobacteria (PGPR) and deficit irrigation on quality and quantity of flax under field and pot conditions to determine bacterial efficiency and to decrease water deficit effects. Methods and Results Initially, in vitro experiments were performed to determine the growth‐promoting characteristics of bacteria. Then in the field, the effects of bacterial inoculation (control, Azotobacter chroococcum, Azospirillum lipoferum, Bacillus amyloliquefaciens, Bacillus sp. strain1 and Pseudomonas putida) on flax traits were evaluated at different irrigation levels (100, 75 and 50% crop water requirement). Bacterial treatments in the pot experiment were selected based on the field experiment results. The irrigation regimes in the pot and field experiments were the same and bacterial treatments included single, doublet and triplet applications of the bacteria. All the bacterial strains could solubilize phosphate, produce ammonia (except for Bacillus sp. strain1), indole acetic acid and siderophore (except P. putida). Field results indicated that the bacteria significantly mitigated the effects of water deficit. Compared with control plants, bacterial treatments increased the oil, linolenic acid, protein and sulphur content; the number of shoots and capsules; and the harvest index in the flax plants. Pot experimental results revealed that the combined inoculations were more effective than single inoculum treatments. Conclusions Bacterial inoculation alleviates deficit irrigation effects in flax plants. Significance and Impact of the Study The effectiveness of applying A. chroococcum, B. amyloliquefaciens and Bacillus sp. strain1 was confirmed, especially as a combination to protect flax against water deficit and to improve its nutritional quality and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.