Natural Language Processing (NLP) systems learn harmful societal biases that cause them to amplify inequality as they are deployed in more and more situations. To guide efforts at debiasing these systems, the NLP community relies on a variety of metrics that quantify bias in models. Some of these metrics are intrinsic, measuring bias in word embedding spaces, and some are extrinsic, measuring bias in downstream tasks that the word embeddings enable. Do these intrinsic and extrinsic metrics correlate with each other? We compare intrinsic and extrinsic metrics across hundreds of trained models covering different tasks and experimental conditions. Our results show no reliable correlation between these metrics that holds in all scenarios across tasks and languages. We urge researchers working on debiasing to focus on extrinsic measures of bias, and to make using these measures more feasible via creation of new challenge sets and annotated test data. To aid this effort, we release code, a new intrinsic metric, and an annotated test set focused on gender bias in hate speech. 1
Natural Language Processing (NLP) systems learn harmful societal biases that cause them to widely proliferate inequality as they are deployed in more and more situations. To address and combat this, the NLP community relies on a variety of metrics to identify and quantify bias in black-box models and to guide efforts at debiasing. Some of these metrics are intrinsic, and are measured in word embedding spaces, and some are extrinsic, which measure the bias present downstream in the tasks that the word embeddings are plugged into. This research examines whether easy-tomeasure intrinsic metrics correlate well to real world extrinsic metrics. We measure both intrinsic and extrinsic bias across hundreds of trained models covering different tasks and experimental conditions and find that there is no reliable correlation between these metrics that holds in all scenarios across tasks and languages. We advise that efforts to debias embedding spaces be always also paired with measurement of downstream model bias, and suggest that that community increase effort into making downstream measurement more feasible via creation of additional challenge sets and annotated test data. We additionally release code, a new intrinsic metric, and an annotated test set for gender bias for hatespeech. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.