Abstract-Several challenges are faced by citizens of urban centers while dealing with day-to-day events, and the absence of a centralized reporting mechanism makes event-reporting and redressal a daunting task. With the push on information technology to adapt to the needs of smart-cities and integrate urban civic services, the use of Open311 architecture presents an interesting solution. In this paper, we present a novel approach that uses an existing Open311 ontology to classify and report non-emergency city-events, as well as to guide the citizen to the points of redressal. The use of linked open data and the semantic model serves to provide contextual meaning and make vast amounts of content hyper-connected and easily-searchable. Such a one-size-fits-all model also ensures reusability and effective visualization and analysis of data across several cities. By integrating urban services across various civic bodies, the proposed approach provides a single endpoint to the citizen, which is imperative for smooth functioning of smart cities.
Abstract²The massive explosion and ubiquity of computing devices and the outreach of the web have been the most defining events of the century so far. As more and more people gain access to the internet, traditional know-something and have-something authentication methods such as PINs and passwords are proving to be insufficient for prohibiting unauthorized access to increasingly personal data on the web. Therefore, the need of the hour is a user-verification system that is not only more reliable and secure, but also unobtrusive and minimalistic. Keystroke Dynamics is a novel Biometric Technique; it is not only unobtrusive, but also transparent and inexpensive. The fusion of keystroke dynamics and Face Recognition engenders the most desirable characteristics of a verification system. Our implementation uses Hidden Markov Models (HMM) for modeling the Keystroke Dynamics, with the help of two widely used Feature Vectors: Keypress Latency and Keypress Duration. On the other hand, Face Recognition makes use of the traditional Eigenfaces approach. The results show that the system has a high precision, with a False Acceptance Rate of 5.4% and a False Rejection Rate of 9.2%. Moreover, it is also future-proof, as the hardware requirements, i.e. camera and keyboard (physical or on-screen), have become an indispensable part of modern computing.
Raga' is the central melodic concept in Hindustani Classical Music. It has a complex structure, often characterized by pathos. In this paper, we describe a technique for Automatic Raga Recognition, based on pitch distributions. We are able to successfully classify ragas with a commendable accuracy on our test dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.