There have been remarkable changes in our lives and the way we perceive the world with advances in computing technology. Healthcare sector is evolving with the intervention of the latest computer-driven technology and has made a remarkable change in the diagnosis and treatment of various diseases. Due to many governing factors including air pollution, there is a rapid rise in chest-related diseases and the number of such patients is rising at an alarming rate. In this research work, we have employed machine learning approach for the detecting various chest-related problems using convolutional neural networks (CNN) on an open dataset of chest X-rays. The method has an edge over the traditional approaches for image segmentation including thresholding, k -means clustering, and edge detection. The CNN cannot scan and process the whole image at an instant; it needs to recursively scan small pixel spots until it has scanned the whole image. Spatial transformation layers and VGG19 have been used for the purpose of feature extraction, and ReLU activation function has been employed due to its inherent low complexity and high computation efficiency; finally, stochastic gradient descent has been used as an optimizer. The main advantage of the current method is that it retains the essential features of the image for prediction along with incorporating a considerable dimensional reduction. The model delivered substantial improvement over existing research in terms of precision, f -score, and accuracy of prediction. This model if used precisely can be very effective for healthcare practitioners in determining the thoracic or pneumonic symptoms in the patient at an early stage thus guiding the practitioner to start the treatment immediately leading to fast improvement in the health status of the patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.