Electrochemical ceramic membrane reactors (ECMRs) with their unique ability to efficiently couple electrical, chemical, and thermal energy sectors can be a large part of the transition toward renewable energies and defossilized economies. ECMRs utilize ceramic conductors to extract or distribute oxide ions or protons -directly controlled by an external electric current. This article gives an overview of ECMR properties along with the functionalities and advantages. For many reactions, e.g., the direct synthesis of ammonia, ECMRs are not available at the preferred temperature range of 300 -550°C. To evidence the possibility of such reactors, functional materials are reviewed. A simple thermodynamic methodology is proposed to determine the suitability of reactions for particular combinations of coupled energy sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.