This paper reviews the most relevant works that have investigated robustness in power grids using Complex Networks (CN) concepts. In this broad field there are two different approaches. The first one is based solely on topological concepts, and uses metrics such as mean path length, clustering coefficient, efficiency and betweenness centrality, among many others. The second, hybrid approach consists of introducing (into the CN framework) some concepts from Electrical Engineering (EE) in the effort of enhancing the topological approach, and uses novel, more efficient electrical metrics such as electrical betweenness, net-ability, and others. There is however a controversy about whether these approaches are able to provide insights into all aspects of real power grids. The CN community argues that the topological approach does not aim to focus on the detailed operation, but to discover the unexpected emergence of collective behavior, while part of the EE community asserts that this leads to an excessive simplification. Beyond this open debate it seems to be no predominant structure (scale-free, small-world) in high-voltage transmission power grids, the vast majority of power grids studied so far. Most of them have in common that they are vulnerable to targeted attacks on the most connected nodes and robust to random failure. In this respect there are only a few works that propose strategies to improve robustness such as intentional islanding, restricted link addition, microgrids and Energies 2015, 8 9212 smart grids, for which novel studies suggest that small-world networks seem to be the best topology.
Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.
The broadcast scheduling problem (BSP) arises in frame design for packet radio networks (PRNs). The frame structure determines the main communication parameters: communication delay and throughput. The BSP is a combinatorial optimization problem which is known to be NP-hard. To solve it, we propose an algorithm with two main steps which naturally arise from the problem structure: the first one tackles the hardest contraints and the second one carries out the throughput optimization. This algorithm combines a Hopfield neural network for the constraints satisfaction and a genetic algorithm for achieving a maximal throughput. The algorithm performance is compared with that of existing algorithms in several benchmark cases; in all of them, our algorithm finds the optimum frame length and outperforms previous algorithms in the resulting throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.