This paper is focused on a study between different heating systems commonly used in industrial installations. Industrial heating systems generally raise difficult problems in choosing the most economical system. If several solutions technically meet the requirements of the indoor climate, in terms of energy efficiency we must focus on the optimal solution. The study was conducted to choose the optimal heating solution for an industrial hall, from the point of view of evaluating the efficiency of the installation of an exhaust gas recirculation equipment. The heating of industrial premises generally raises difficult problems due to the diversity of the types of buildings encountered, the variety of activities carried out and the need to choose the most economical system, both in terms of investment and operation. The radiation heating system using natural gas offers the solution of this problem, in situations where the classic heating systems (hot air heating or static bodies) cannot ensure optimal indoor conditions (in the sense that they do not achieve a relatively uniform temperature in the heated space, cause drafts and have low yields). For spaces with a high height (over 4m) these systems can only be considered satisfactory in the case of general heating with very high energy consumption. From the study performed, but also from the specialized technical literature, it is concluded that these systems offer an energy saving, compared to the classical systems.
This paper presents the mathematical model and simulation of a thermal system for heating and supplying hot water to industrial or residential consumers consisting of a heat exchanger on the heating circuit and a heat exchanger provided with an accumulation tank on the domestic hot water circuit, this scheme is generally adopted in the industrial thermal points and increasingly in module-type thermal points for residential consumers. The mathematical model is based on the mathematical equations describing this system and developed using the MATLAB - Simulink program. Thus, as a result of the simulations, we can see the evolutions in time of the water temperatures on the heating circuit and the domestic hot water circuit, as well as the quantity of heat delivered by them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.