Variable Rate Irrigation (VRI) considers spatial variability in soil and plant characteristics to optimize irrigation management in agricultural fields. The advent of unmanned aircraft systems (UAS) creates an opportunity to utilize high-resolution (spatial and temporal) imagery into irrigation management due to decreasing costs, ease of operation, and reduction of regulatory constraints. This research aimed to evaluate the use of UAS data for VRI, and to quantify the potential of VRI in terms of relative crop and water response. Irrigation treatments were: (1) VRI using Landsat imagery (VRI-L), (2) VRI using UAS imagery (VRI-U), (3) uniform (U), and (4) rainfed (R). An updated remote-sensing-based evapotranspiration and water balance 1 B h a t t i e t a l . i n A g r i c u l t u r a l W a t e r M a n a g e m e n t 2 3 0 ( 2 0 2 0 ) 2 model, incorporating soil water measurements, was used to make prescriptions for the VRI treatments at a field site in eastern Nebraska. In 2017, the mean prescribed seasonal irrigation depth (I p ) for VRI-L was significantly greater (α=0.05) than the I p for U for soybean. In 2018, I p for soybean was greatest for VRI-U treatment followed by the U and VRI-L treatments, with all being significantly different from each other. No significant differences in I p for maize were observed in 2017 or 2018. In all cropyear combinations, the VRI and U treatments had significantly greater evapotranspiration (ET) than the R treatment. Yield differences among treatments were not significant (except for rainfed maize compared to VRI-L in 2017). For maize in 2017, IWUE for VRI-L was comparable to the U treatment. The UAS imagery was a better match for the scale of crop management than Landsat imagery, particularly for thermal data. The multispectral UAS data was successfully used in the crop coefficient ET model for real-time irrigation, but using UAS to determine accurate canopy temperatures for surface energy balance modeling remains a challenge.
Variable rate irrigation (VRI) may improve center pivot irrigation management, including deficit irrigation. A remote-sensing-based evapotranspiration model was implemented with Landsat imagery to manage irrigations for a VRI equipped center pivot irrigated field located in West-Central Nebraska planted to maize in 2017 and soybean in 2018. In 2017, the study included VRI using the model, and uniform irrigation using neutron attenuation for full irrigation with no intended water stress (VRI-Full and Uniform-Full treatments, respectively). In 2018, two deficit irrigation treatments were added (VRI-Deficit and Uniform-Deficit, respectively) and the model was modified in an attempt to reduce water balance drift; model performance was promising, as it was executed unaided by measurements of soil water content throughout the season. VRI prescriptions did not correlate well with available water capacity (R 2 < 0.4); however, they correlated better with modeled ET in 2018 (R 2 = 0. 69, VRI-Full; R 2 = 0.55, VRI-Deficit). No significant differences were observed in total intended gross irrigation depth in 2017 (VRI-Full = 351 mm, Uniform Full = 344). However, in 2018, VRI resulted in lower mean prescribed gross irrigation than the corresponding uniform treatments (VRI-Full = 265 mm, Uniform Full = 282 mm, VRI-Deficit = 234 mm, and Uniform Deficit = 267 mm). Notwithstanding the differences in prescribed irrigation (in 2018), VRI did not affect dry grain yield, with no statistically significant differences being found between any treatments in either year (F = 0.03, p = 0.87 in 2017; F = 0.00, p = 0.96 for VRI/Uniform and F = 0.01, p = 0.93 for Full/Deficit in 2018). Likewise, any reduction in irrigation application apparently did not result in detectable reductions in deep percolation potential or actual evapotranspiration. Additional research is needed to further vet the model as a deficit irrigation management tool. Suggested model improvements include a continuous function for water stress and an optimization routine in computing the basal crop coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.