Complex networks represent the natural backbone to study epidemic processes in populations of interacting individuals. Such a modeling framework, however, is naturally limited to pairwise interactions, making it less suitable to properly describe social contagion, where individuals acquire new norms or ideas after simultaneous exposure to multiple sources of infections. Simplicial contagion has been proposed as an alternative framework where simplices are used to encode group interactions of any order. The presence of these higher-order interactions leads to explosive epidemic transitions and bistability. In particular, critical mass effects can emerge even for infectivity values below the standard pairwise epidemic threshold, where the size of the initial seed of infectious nodes determines whether the system would eventually fall in the endemic or the healthy state. Here we extend simplicial contagion to time-varying networks, where pairwise and higher-order simplices can be created or destroyed over time. By following a microscopic Markov chain approach, we find that the same seed of infectious nodes might or might not lead to an endemic stationary state, depending on the temporal properties of the underlying network structure, and show that persistent temporal interactions anticipate the onset of the endemic state in finite-size systems. We characterize this behavior on higher-order networks with a prescribed temporal correlation between consecutive interactions and on heterogeneous simplicial complexes, showing that temporality again limits the effect of higher-order spreading, but in a less pronounced way than for homogeneous structures. Our work suggests the importance of incorporating temporality, a realistic feature of many real-world systems, into the investigation of dynamical processes beyond pairwise interactions.
Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.
From sports to science, the recent availability of large-scale data has allowed to gain insights on the drivers of human innovation and success in a variety of domains. Here we quantify human performance in the popular game of chess by leveraging a very large dataset comprising of over 120 million games between almost 1 million players. We find that individuals encounter hot streaks of repeated success, longer for beginners than for expert players, and even longer cold streaks of unsatisfying performance. Skilled players can be distinguished from the others based on their gaming behaviour. Differences appear from the very first moves of the game, with experts tending to specialize and repeat the same openings while beginners explore and diversify more. However, experts experience a broader response repertoire, and display a deeper understanding of different variations within the same line. Over time, the opening diversity of a player tends to decrease, hinting at the development of individual playing styles. Nevertheless, we find that players are often not able to recognize their most successful openings. Overall, our work contributes to quantifying human performance in competitive settings, providing a first large-scale quantitative analysis of individual careers in chess, helping unveil the determinants separating elite from beginner performance.
Figure 2. Diversity and specialization in the first move and black's response. (a) Boxplots showing diversity (entropy) of first move by a player as white, calculated over all players individually and aggregated into the 4 different skill levels. Weak players start games with diverse collection of first move as white when compared to stronger players. (b) Boxplots showing diversity of black's response experienced by white player, for each of white's top 5 most played first moves-e4, d4, Nf3, c4 and e3 (in descending order of popularity). As white, weakest players encounter lowest diversity in responses captured by low response entropy-for all of white's most played opening moves, except Nf3.
Human communication, the essence of collective social phenomena ranging from small-scale organizations to worldwide online platforms, features intense reciprocal interactions between members in order to achieve stability, cohesion, and cooperation in social networks. While high levels of reciprocity are well known in aggregated communication data, temporal patterns of reciprocal information exchange have received far less attention. Here we propose measures of reciprocity based on the time ordering of interactions and explore them in data from multiple communication channels, including calls, messaging and social media. By separating each channel into reciprocal and non-reciprocal temporal networks, we find persistent trends that point to the distinct roles of one-to-one exchange versus information broadcast. We implement several null models of communication activity, which identify memory, a higher tendency to repeat interactions with past contacts, as a key source of temporal reciprocity. When adding memory to a model of activity-driven, time-varying networks, we reproduce the levels of temporal reciprocity seen in empirical data. Our work adds to the theoretical understanding of the emergence of reciprocity in human communication systems, hinting at the mechanisms behind the formation of norms in social exchange and large-scale cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.