Dengue and influenza-like illness (ILI) are two of the leading causes of viral infection in the world and it is estimated that more than half the world’s population is at risk for developing these infections. It is therefore important to develop accurate methods for forecasting dengue and ILI incidences. Since data from multiple sources (such as dengue and ILI case counts, electronic health records and frequency of multiple internet search terms from Google Trends) can improve forecasts, standard time series analysis methods are inadequate to estimate all the parameter values from the limited amount of data available if we use multiple sources. In this paper, we use a computationally efficient implementation of the known variable selection method that we call the Autoregressive Likelihood Ratio (ARLR) method. This method combines sparse representation of time series data, electronic health records data (for ILI) and Google Trends data to forecast dengue and ILI incidences. This sparse representation method uses an algorithm that maximizes an appropriate likelihood ratio at every step. Using numerical experiments, we demonstrate that our method recovers the underlying sparse model much more accurately than the lasso method. We apply our method to dengue case count data from five countries/states: Brazil, Mexico, Singapore, Taiwan, and Thailand and to ILI case count data from the United States. Numerical experiments show that our method outperforms existing time series forecasting methods in forecasting the dengue and ILI case counts. In particular, our method gives a 18 percent forecast error reduction over a leading method that also uses data from multiple sources. It also performs better than other methods in predicting the peak value of the case count and the peak time.
Conventional Vector Autoregressive (VAR) modelling methods applied to high dimensional neural time series data result in noisy solutions that are dense or have a large number of spurious coefficients. This reduces the speed and accuracy of auxiliary computations downstream and inflates the time required to compute functional connectivity networks by a factor that is at least inversely proportional to the true network density. As these noisy solutions have distorted coefficients, thresholding them as per some criterion, statistical or otherwise, does not alleviate the problem. Thus obtaining a sparse representation of such data is important since it provides an efficient representation of the data and facilitates its further analysis. We propose a fast Sparse Vector Autoregressive Greedy Search (SVARGS) method that works well for high dimensional data, even when the number of time points is relatively low, by incorporating only statistically significant coefficients. In numerical experiments, our methods show high accuracy in recovering the true sparse model. The relative absence of spurious coefficients permits accurate, stable and fast evaluation of derived quantities such as power spectrum, coherence and Granger causality. Consequently, sparse functional connectivity networks can be computed, in a reasonable time, from data comprising tens of thousands of channels/voxels. This enables a much higher resolution analysis of functional connectivity patterns and community structures in such large networks than is possible using existing time series methods. We apply our method to EEG data where computed network measures and community structures are used to distinguish emotional states as well as to ADHD fMRI data where it is used to distinguish children with ADHD from typically developing children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.