Conducting polymers, such as polyaniline (PANi) and polypyrrole (PPy), and their nanocomposites, are desired in a wide range of applications, including supercapacitors, lithium ion battery, chemical sensors, biosensors, barrier thin films, and coatings, because of their interesting electrical and electrochemical properties. It is well known that the properties of polymer nanocomposites depend on their chemical structure, as well as their microstructure, yet scientists and engineers have not fully understood how to properly control the structure of polymer nanocomposites. In this study, it is shown that the structure of polyaniline–montmorillonite clay nanocomposites (PACN) can be controlled by varying the ammonium persulfate (APS, oxidant) concentration. The structure of polyaniline and Cloisite 20A clay are, therefore, profoundly affected during the synthesis of PACN nanocomposites. The thickness of polyaniline crystal decreased with increasing oxidant concentration. Fourier transform infrared spectroscopy (FTIR) was used to determine the oxidation state of PANi. The structure of the nanocomposites was studied by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), wide-angle X-ray scattering (WAXS), and small-angle X-ray scattering (SAXS). Electrochemical impedance spectroscopy (EIS) analysis of polyimide nanocomposite coatings containing PACN with varying levels of intercalation and exfoliation indicate that the coating impedance decreased with exposure time for some coating systems. It is shown that polyimide–PACN nanocomposite coating containing highly intercalated clay was more durable and maintained constant impedance after 20 weeks of exposure in a corrosive medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.