There is an increasing need for the development of a robust space weather forecasting framework. State‐of‐the‐art MHD space weather forecasting frameworks are based upon the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) extrapolation models for the magnetic field using synoptic magnetograms. These models create a solar wind (SW) background for the simulations using empirical relations of Wang, Sheeley and Arge (WSA), at the inner boundary of heliosphere and have been used to simulate coronal mass ejections for specific cases in previous studies. Besides these MHD frameworks, the Heliospheric Upwind eXtrapolation (HUX) technique can extrapolate SW from inner heliospheric boundaries to L1 and can give a reliable estimate of the SW velocity at L1 comparable to MHD models but in a short computational time. We carried out an extensive parametric study of the performance of the Model1 (PFSS+WSA+HUX) and Model2 (PFSS+SCS+WSA+HUX) for SW velocity prediction at L1. We implemented this framework on 60 Carrington Rotations from CR2047 to CR2107 during 2006–2011, covering the descending and deep minimum phase of solar cycle (SC) 23, and the ascending phase of SC 24. Our results show an unexpected decrease in the performance of the framework during the deep minimum phase of cycle 23, which is attributed to the decrease in the observed coronal hole area. As SC 24 began, this decreasing trend vanished due to an increase in the coronal hole (CH) area at the low and mid‐latitudes, suggesting a good correlation between the performance of the framework and the variation in the CH area.
Coronal mass ejections and high speed solar streams serve as perturbations to the background solar wind that have major implications in space weather dynamics. Therefore, a robust framework for accurate predictions of the background wind properties is a fundamental step toward the development of any space weather prediction toolbox. In this pilot study, we focus on the implementation and comparison of various models that are critical for a steady state, solar wind forecasting framework. Specifically, we perform case studies on Carrington rotations 2,053, 2,082, and 2,104, and compare the performance of magnetic field extrapolation models in conjunction with velocity empirical formulations to predict solar wind properties at Lagrangian point L1. Two different models to extrapolate the solar wind from the coronal domain to the inner-heliospheric domain are presented, namely, a) Kinematics based [Heliospheric Upwind eXtrapolation (HUX)] model, and b) Physics based model. The physics based model solves a set of conservative equations of hydrodynamics using the PLUTO code and can additionally predict the thermal properties of solar wind. The assessment in predicting solar wind parameters of the different models is quantified through statistical measures. We further extend this developed framework to also assess the polarity of inter-planetary magnetic field at L1. Our best models for the case of CR2053 gives a very high correlation coefficient (∼0.73–0.81) and has an root mean square error of (∼75–90 km s−1). Additionally, the physics based model has a standard deviation comparable with that obtained from the hourly OMNI solar wind data and also produces a considerable match with observed solar wind proton temperatures measured at L1 from the same database.
The main objective of our project is to conserve the available solar energy and improve its utilization with the help of phase change material; here we have absorbed solar energy to prepare food especially for cooking rice, boiling potatoes and eggs. The use of PCM in the solar cooker has improved its efficiency over conventional solar cooker and cooking food hot in off sunshine hours. It is being eco-friendly and other than that it save fuel, gas, coal which are exhaustible source of energy. In the present article some of different phase change materials are studied for solar cooking and among them Coconut Oil (commercial grade) is found to be a good latent heat storage which is experimentally tested in a simple box type solar cooker and the comparison is made with and without PCM.Key word: solar cooker, coconut oil, concentrating lens, phase change materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.