Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard University, New Delhi, India
AbstractObjective: In this study, attempt has been focused to prepare a nanoemulsion (NE) gel for topical delivery of amphotericin B (AmB) for enhanced as well as sustained skin permeation, in vitro antifungal activity and in vivo toxicity assessment. Materials and methods: A series of NE were prepared using sefsol-218 oil, Tween 80 and Transcutol-P by slow spontaneous titration method. Carbopol gel (0.5% w/w) was prepared containing 0.1% w/w AmB. Furthermore, NE gel (AmB-NE gel) was characterized for size, charge, pH, rheological behavior, drug release profile, skin permeability, hemolytic studies and ex vivo rat skin interaction with rat skin using differential scanning calorimeter. The drug permeability and skin irritation ability were examined with confocal laser scanning microscopy and Draize test, respectively. The in vitro antifungal activity was investigated against three fungal strains using the well agar diffusion method. Histopathological assessment was performed in rats to investigate their toxicological potential.Results and discussion: The AmB-NE gel (18.09 ± 0.6 mg/cm 2 /h) and NE (15.74 ± 0.4 mg/cm 2 /h) demonstrated the highest skin percutaneous permeation flux rate as compared to drug solution (4.59 ± 0.01 mg/cm 2 /h) suggesting better alternative to painful and nephrotoxic intravenous administration. Hemolytic and histopathological results revealed safe delivery of the drug. Based on combined results, NE and AmB-NE gel could be considered as an efficient, stable and safe carrier for enhanced and sustained topical delivery for AmB in local skin fungal infection. Conclusion: Topical delivery of AmB is suitable delivery system in NE gel carrier for skin fungal infection.
Silver nanoparticles (AgNPs) are gaining a great deal of attention in biomedical applications due to their unique physicochemical properties. In this study, green synthesis of AgNPs was developed using seaweed polysaccharide fucoidan. The AgNPs were further coated with chitosan to form an electrolyte complex on the surface. The developed chitosan–fucoidan complex-coated AgNPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). FT-IR results suggested strong polyelectrolyte complexation between fucoidan and chitosan. The developed chitosan–fucoidan complex-coated AgNPs significantly inhibited microbial growth. Moreover, the AgNPs showed efficient anticancer activity in human cervical cancer cells (HeLa). This study demonstrated that chitosan–fucoidan complex-coated AgNPs hold high potential for food and cosmeceutical applications.
Background/Objective
This study examined the role of different psychological coping mechanisms in mental and physical health during the initial phases of the COVID-19 crisis with an emphasis on meaning-centered coping.
Method
A total of 11,227 people from 30 countries across all continents participated in the study and completed measures of psychological distress (depression, stress, and anxiety), loneliness, well-being, and physical health, together with measures of problem-focused and emotion-focused coping, and a measure called the Meaning-centered Coping Scale (MCCS) that was developed in the present study. Validation analyses of the MCCS were performed in all countries, and data were assessed by multilevel modeling (MLM).
Results
The MCCS showed a robust one-factor structure in 30 countries with good test-retest, concurrent and divergent validity results. MLM analyses showed mixed results regarding emotion and problem-focused coping strategies. However, the MCCS was the strongest positive predictor of physical and mental health among all coping strategies, independently of demographic characteristics and country-level variables.
Conclusions
The findings suggest that the MCCS is a valid measure to assess meaning-centered coping. The results also call for policies promoting effective coping to mitigate collective suffering during the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.