Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.
A fundamental concern in the Quantitative Structure-Activity Relationship approach to toxicity evaluation is the generalization of the model over a wide range of compounds. The data driven modelling of toxicity, due to the complex and ill-defined nature of eco-toxicological systems, is an uncertain process. The development of a toxicity predicting model without considering uncertainties may produce a model with a low generalization performance. This study presents a novel approach to toxicity modelling that handles the involved uncertainties using a fuzzy filter, and thus improves the generalization capability of the model. The method is illustrated by considering a data set dealing with the fathead minnow (Pimephales promelas) toxicity of 568 organic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.