We theoretically analyze the observations reported in a four-path quantum interference experiment via multiple beam Ramsey interference [Phys. Rev. Lett. 86, 559 (2001)]. In this experiment, a selective scattering of photons from just one interfering path causes decoherence. However, contrary to expectations, there is an increase in the contrast of the interference pattern, demonstrating that path selective decoherence can not only lead to a decrease, but under certain conditions, to an increase of the fringe contrast. Here we explain this seemingly counter-intuitive effect based on a model for a multipath interference, with four to six slits, in the presence of decoherence. The effect of the environment is modeled via a coupling to a bath of harmonic oscillators. When decoherence is introduced in one of the multiple paths, an enhancement in fringe contrast is seen under certain conditions. A similar effect is shown to appear if instead of path-selective decoherence, a selective path detector is introduced. Our analysis points to the fact that while traditional fringe visibility captures the wave nature in the two-path case, it can fail in multi-path situations. We explain the enhancement of fringe visibility and also show that quantum coherence based on the l 1 norm of coherence, in contrast to traditional visibility, remains a good quantifier of wave nature, even in such situations. The enhancement of fringe contrast in the presence of environmental decoherence underscores the limitations of traditional visibility as a good measure for wave nature in quantifying complementarity and also makes it an unlikely candidate for quantifying decoherence. Our analysis could lead to better insight in ways to quantify decoherence in multi-path interference, and in studies that seek to exploit quantum superpositions and quantum coherence for quantum information applications.
Generalizing the notion of dynamic quantum secret sharing (DQSS), a simplified protocol for hierarchical dynamic quantum secret sharing (HDQSS) is proposed and it is shown that the protocol can be implemented using any existing protocol of quantum key distribution, quantum key agreement or secure direct quantum communication. The security of this proposed protocol against eavesdropping and collusion attacks is discussed with specific attention towards the issues related to the composability of the subprotocols that constitute the proposed protocol. The security and qubit efficiency of the proposed protocol is also compared with that of other existing protocols of DQSS. Further, it is shown that it is possible to design a semi-quantum protocol of HDQSS and in principle, the protocols of HDQSS can be implemented using any quantum state. It is also noted that the completely orthogonal-state-based realization of HDQSS protocol is possible and that HDQSS can be experimentally realized using a large number of alternative approaches.
A multi-slit interference experiment, with which-way detectors, in the presence of environment induced decoherence, is theoretically analyzed. The effect of environment is modeled via a coupling to a bath of harmonic oscillators. Through an exact analysis, an expression for C, a recently introduced measure of coherence, of the particle at the detecting screen is obtained as a function of the parameters of the environment. It is argued that the effect of decoherence can be quantified using the measured coherence value which lies between zero and one. For the specific case of two slits, it is shown that the decoherence time can be obtained from the measured value of the coherence, C , thus providing a novel way to quantify the effect of decoherence via direct measurement of quantum coherence. This would be of significant value in many current studies that seek to exploit quantum superpositions for quantum information applications and scalable quantum computation.
Voting forms the most important tool for arriving at a decision in any institution. The changing needs of the civilization currently demands a practical yet secure electronic voting system, but any flaw related to the applied voting technology can lead to tampering of the results with the malicious outcomes. Currently, blockchain technology due to its transparent structure forms an emerging area of investigation for the development of voting systems with a far greater security. However, various apprehensions are yet to be conclusively resolved before using blockchain in high stakes elections. Other than this, the blockchain based voting systems are vulnerable to possible attacks by upcoming noisy intermediate scale quantum (NISQ) computer. To circumvent, most of these limitations, in this work, we propose an anonymous voting scheme based on quantum assisted blockchain by enhancing the advantages offered by blockchain with the quantum resources such as quantum random number generators and quantum key distribution. The purposed scheme is shown to satisfy the requirements of a good voting scheme. Further, the voting scheme is auditable and can be implemented using the currently available technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.