This study investigates the pozzolanic potential of industrial waste, which fails to meet the chemical composition as defined by the various international standards, e.g., IS: 3812 (Part 1): 2017 and ASTM C618-19 to adopt as a supplementary cementitious material. The effects of mechanical nanoprocessing on pozzolanic reaction efficiency, impact on energy efficiency, and construction affordability were studied. The result of mechanical milling shows the improvement in pozzolanicity, and the physicomechanical characteristics of novel concrete incorporated with identified industrial waste are comparable with control concrete. The building energy simulation was carried out using the BIM software for the house, modelled with controlled concrete, and novel concrete incorporating the identified milled industrial waste. The peak cooling load and building material cost of a novel concrete model house were 34% and 9.09% less than the conventional concrete. The study reveals that the chemical characterization provided in international standards shall not be the only criteria to decide the suitability of the materials to use as supplementary cementitious material, whereas the same can be examined and improved through various treatments, and mechanical nanoprocessing may be one of the best options. Cement production and utilization affect the environment. To reduce the concern, pozzolanic investigation of industrial waste is necessary, which can address the issue of uncontrolled extraction of natural resources, emission, disposal, and pollution globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.