When inflation is driven by a pseudo-scalar field χ coupled to vectors as α 4 χFF , this coupling may lead to a copious production of gauge quanta, which in turns induces non-Gaussian and non-scale invariant corrections to curvature perturbations. We point out that this mechanism is generically at work in a broad class of inflationary models in supergravity hence providing them with a rich set of observational predictions. When the gauge fields are massless, significant effects on CMB scales emerge only for relatively large α. We show that in this regime, the curvature perturbations produced at the last stages of inflation have a relatively large amplitude that is of the order of the upper bound set by the possible production of primordial black holes by non-Gaussian perturbations. On the other hand, within the supergravity framework described in our paper, the gauge fields can often acquire a mass through a coupling to additional light scalar fields. Perturbations of these fields modulate the duration of inflation, which serves as a source for non-Gaussian perturbations of the metric. In this regime, the bounds from primordial black holes are parametrically satisfied and non-Gaussianity of the local type can be generated at the observationally interesting level fNL ∼ O(10).
We present a critical discussion of quantum corrections, renormalisation, and the computation of the beta functions and the effective potential in Higgs inflation. In contrast with claims in the literature, we find no evidence for a disagreement between the Jordan and Einstein frames, even at the quantum level. For clarity of discussion we concentrate on the case of a real scalar Higgs. We first review the classical calculation and then discuss the back reaction of gravity. We compute the beta functions for the Higgs quartic coupling and non-minimal coupling constant. Here, the mid-field regime is non-renormalisable, but we are able to give an upper bound on the 1-loop corrections to the effective potential. We show that, in computing the effective potential, the Jordan and Einstein frames are compatible if all mass scales are transformed between the two frames. As such, it is consistent to take a constant cutoff in either the Jordan or Einstein frame, and both prescriptions yield the same result for the effective potential. Our results are extended to the case of a complex scalar Higgs.
We compute the one-loop renormalization group equations for Standard Model Higgs inflation. The calculation is done in the Einstein frame, using a covariant formalism for the multi-field system. All counterterms, and thus the betafunctions, can be extracted from the radiative corrections to the two-point functions; the calculation of higher n-point functions then serves as a consistency check of the approach. We find that the theory is renormalizable in the effective field theory sense in the small, mid and large field regime. In the large field regime our results differ slightly from those found in the literature, due to a different treatment of the Goldstone bosons. *
Non-attractor models of inflation are characterized by the super-horizon evolution of curvature perturbations, introducing a violation of the non-Gaussian consistency relation between the bispectrum's squeezed limit and the power spectrum's spectral index. In this work we show that the bispectrum's squeezed limit of non-attractor models continues to respect a relation dictated by the evolution of the background. We show how to derive this relation using only symmetry arguments, without ever needing to solve the equations of motion for the perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.