In the present investigation, we report a one-step synthesis method of wafer-scale highly crystalline tungsten disulfide (WS2) nanoparticle thin film by using a modified hot wire chemical vapor deposition (HW-CVD) technique. The average size of WS2 nanoparticle is found to be 25-40 nm over an entire 4 in. wafer of quartz substrate. The low-angle XRD data of WS2 nanoparticle shows the highly crystalline nature of sample along with orientation (002) direction. Furthermore, Raman spectroscopy shows two prominent phonon vibration modes of E(1)2g and A1g at ∼356 and ∼420 cm(-1), respectively, indicating high purity of material. The TEM analysis shows good crystalline quality of sample. The synthesized WS2 nanoparticle thin film based device shows good response to humidity and good photosensitivity along with good long-term stability of the device. It was found that the resistance of the films decreases with increasing relative humidity (RH). The maximum humidity sensitivity of 469% along with response time of ∼12 s and recovery time of ∼13 s were observed for the WS2 thin film humidity sensor device. In the case of photodetection, the response time of ∼51 s and recovery time of ∼88 s were observed with sensitivity ∼137% under white light illumination. Our results open up several avenues to grow other transition metal dichalcogenide nanoparticle thin film for large-area nanoelectronics as well as industrial applications.
We investigate the growth mechanism and temperature dependent Raman spectroscopy of chemical vapor deposited large area monolayer of MoS2, MoSe2, WS2 and WSe2 nanosheets up to 70 μm in lateral size. Further, our temperature dependent Raman spectroscopy investigation shows that softening of Raman modes as temperature increases from 80 K to 593 K is due to the negative temperature coefficient and anharmonicity. The temperature dependent softening modes of chemical vapor deposited monolayers of all TMDCs were explained on the basis of a double resonance phonon process which is more active in an atomically thin sample. This process can also be fundamentally pertinent in other emerging two-dimensional layered and heterostructured materials.
Titanium trisulfide (TiS3) has recently attracted the interest of the 2D community as it presents a direct bandgap of ~1.0 eV, shows remarkable photoresponse, and has a predicted carrier mobility up to 10000 cm 2 V -1 s -1 . However, a study of the vibrational properties of TiS3, relevant to understanding the electronphonon interaction which can be the main mechanism limiting the charge carrier mobility, is still lacking.In this work, we take the first steps to study the vibrational properties of TiS3 through temperature dependent Raman spectroscopy measurements of TiS3 nanoribbons and nanosheets. Our investigation shows that all the Raman modes linearly soften (red shift) as the temperature increases from 88 K to 570 K, due to the anharmonic vibrations of the lattice which also includes contributions from the lattice thermal expansion.This softening with the temperature of the TiS3 modes is more pronounced than that observed in other 2D semiconductors such as MoS2, MoSe2, WSe2 or black phosphorus (BP). This marked temperature dependence of the Raman could be exploited to determine the temperature of TiS3 nanodevices by using Raman spectroscopy as a non-invasive and local thermal probe. Interestingly, the TiS3 nanosheets show a stronger temperature dependence of the Raman modes than the nanoribbons, which we attribute to a lower interlayer coupling in the nanosheets. This is the post-peer reviewed version of the following article: A.S. Pawbake et al. "Temperature dependent Raman spectroscopy of titanium trisulfide (TiS3) nanoribbons and nanosheets"
Earth-abundant
quaternary chalcogenides are promising candidate
materials for thin-film solar cells. Here we have synthesized Cu2NiSnS4 nanocrystals and thin films in a novel zincblende
type cubic phase using a facile hot-injection method. The structural,
electronic, and optical properties are studied using various experimental
techniques, and the results are further corroborated within first-principles
density functional theory based calculations. The estimated direct
band gap ∼ 1.57 eV and high optical absorption coefficient
∼ 106 cm–1 indicate potential
application in a low-cost thin-film solar cell. Further, the alignments
for both conduction and valence bands are directly measured through
cyclic voltametry. The 1.47 eV electrochemical gap and very small
conduction band offset of −0.12 eV measured at the CNTS/CdS
heterojunction are encouraging factors for the device. These results
enable us to model carrier transport across the heterostructure interface.
Finally, we have fabricated a CNTS solar cell device for the first
time, with high open circuit voltage and fill factor. The results
presented here should attract further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.