The present paper considers the evaluation of temperature regulated and unregulated charging strategies to select the appropriate one to ensure extended battery life with reduced charging time. Temperature regulated pulse charging (TRPC) and temperature regulated reflex charging (TRRC) are compared with the Constant current-constant voltage (CC-CV) charging strategy. In the case of CC-CV charging temperature of the battery rises with the magnitude of the current being injected and cannot be regulated without any external cooling arrangement. Impact on the State of health (SOH) and the expected lifespan of the battery are considered as the parameters of evaluation. Temperature regulated strategies are implemented through a discrete electro-thermal model, which acts as a temperature estimator. The coefficient of the estimators corresponds to the battery parameters such as internal resistance and thermal time constants, entropy, etc. Temperature regulation is ensured in the three identified sections of charge deposited vs magnitude of the injected current. Three sections are identified as sections where the injected current is not sufficient to raise the battery temperature to set limit or not and the level of charge submitted as compared to normal charging. Experimentation is carried with 12 V, 26 Ah Valve regulated lead-acid battery to justify that increase in temperature reference of regulation allows submission of higher charge for the same charging rate. It is demonstrated that TRPC results in a significant reduction (≈60%) in charging time as compared to CC-CV and TRRC. For the same charging time as achieved with TRPC, TRPC results in almost double the expected life of operation and better SOH as compared to CC-CV and TRRC. INDEX TERMS discrete electro-thermal model, state of health, pulse charging strategy, reflex charging strategy, Valve Regulated Lead Acid battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.