Neurodegenerative disorders including Alzheimer’s, Parkinson’s, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood–brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
The formation, manufacture and characterization of low energy water-in-oil (w/o) nanoemulsions prepared using cold pressed flaxseed oil containing efavirenz was investigated. Pseudo-ternary phase diagrams were constructed to identify the nanoemulsion region(s). Other potential lipid-based drug delivery phases containing flaxseed oil with 1:1 m/m surfactant mixture of Tween® 80, Span® 20 and different amounts of ethanol were tested to characterize the impact of surfactant mixture on emulsion formation. Flaxseed oil was used as the oil phase as efavirenz exhibited high solubility in the vehicle when compared to other vegetable oils tested. Optimization of surfactant mixtures was undertaken using design of experiments, specifically a D-optimal design with the flaxseed oil content set at 10% m/m. Two solutions from the desired optimization function were produced based on desirability and five nanoemulsion formulations were produced and characterized in terms of in vitro release of efavirenz, physical and chemical stability. Metastable nanoemulsions containing 10% m/m flaxseed oil were successfully manufactured and significant isotropic gel (semisolid) and o/w emulsions were observed during phase behavior studies. Droplet sizes ranged between 156 and 225 nm, zeta potential between −24 and −41 mV and all formulations were found to be monodisperse with polydispersity indices ≤ 0.487.
Pharmaceuticals are emerging contaminants in the aquatic environments. Their presence poses toxicological effects in humans and animals even at trace concentrations. This study investigated the presence of antibiotics, anti-epilepsy and anti-inflammatory drugs in river water of selected rivers in the Eastern Cape Province in South Africa. Enzyme-linked immunosorbent assay was used for screening of sulfamethoxazole and fluoroquinolones antibiotics. The samples were collected in upper-stream, middle-stream and lower-stream regions of the rivers and effluent of selected wastewater treatment plants. Pre-concentration of the samples was conducted using lyophilisation and extraction was conducted using solid phase extraction (SPE) on Waters Oasis hydrophilic-lipophilic-balanced cartridge. The percentage recovery after sample clean-up on SPE was 103% ± 6.9%. This was followed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry. The detected analytes were sulfamethoxazole, erythromycin, clarithromycin and carbamazepine. Carbamazepine and erythromycin were detected in high concentrations ranging from 81.8 to 36,576.2 ng/L and 11.2 to 11,800 ng/L respectively, while clarithromycin and sulfamethoxazole were detected at moderate concentrations ranging from 4.8 to 3280.4 ng/L and 6.6 to 6968 ng/L, respectively. High concentrations of pharmaceuticals were detected on the lower-stream sites as compared to upper-stream sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.