Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here, we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast Saccharomyces cerevisiae. We assessed pairwise proximities of 18 conserved coat-associated proteins and used clathrin subunits and protein truncations as molecular rulers to obtain a high-resolution protein map of the coat. Furthermore, we followed rearrangements of coat proteins during membrane invagination and their binding dynamics at the endocytic site. We show that the endocytic coat proteins are not confined inside the clathrin lattice, but form distinct functional layers above and below the lattice. Importantly, key endocytic proteins transverse the clathrin lattice deeply into the cytoplasm connecting thus the membrane and cytoplasmic parts of the coat. We propose that this design enables an efficient and regulated function of the endocytic coat during endocytic vesicle formation.
Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast. We assessed proximities of 18 conserved coat-associated proteins and used clathrin subunits and protein truncations as molecular rulers to obtain a high-resolution protein map of the coat. Furthermore, we followed rearrangements of coat proteins during membrane invagination and their binding dynamics at the endocytic site. We show that the endocytic coat is stratified into several functional layers situated above and below the clathrin lattice with key proteins transversing through the lattice deeply into the cytoplasm. We propose that this conserved design enables an efficient and regulated function of the endocytic coat during endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.