BackgroundThe plant-specific TCP transcription factors play different functions in multiple processes of plant growth and development. TCP family genes have been identified in several plant species, but no comprehensive analysis of the TCP family in grapevine has been undertaken to date, especially their roles in fruit development.ResultsA total of 18 non-redundant grapevine TCP (VvTCP) genes distributing on 11 chromosomes were identified. Phylogenetic and structural analysis showed that VvTCP genes were divided into two main classes - class I and class II. The Class II genes were further classified into two subclasses, the CIN subclass and the CYC/TB1 subclass. Segmental duplication was a predominant duplication event which caused the expansion of VvTCP genes. The cis-acting elements analysis and tissue-specific expression patterns of VvTCP genes demonstrated that these VvTCP genes might play important roles in plant growth and development. Expression patterns of VvTCP genes during fruit development and ripening were analyzed by RNA-Seq and qRT-PCR. Among them, 11 VvTCP genes were down-regulated during different fruit developmental stages, while only one VvTCP genes were up-regulated, suggesting that most VvTCP genes were probably related to early development in grapevine fruit. Futhermore, the expression of most VvTCP genes can be inhibited by drought and waterlogging stresses.ConclusionsOur study establishes the first genome-wide analysis of the grapevine TCP gene family and provides valuable information for understanding the classification and functions of the TCP genes in grapevine.
Plant copper amine oxidases (CuAOs) are involved in wound healing, defense against pathogens, methyl-jasmonate-induced protoxylem differentiation, and abscisic acid (ABA)-induced stomatal closure. In the present study, we investigated the role of the Arabidopsis thaliana CuAOδ (AtCuAOδ; At4g12290) in the ABA-mediated stomatal closure by genetic and pharmacological approaches. Obtained data show that AtCuAOδ is up-regulated by ABA and that two Atcuaoδ T-DNA insertional mutants are less responsive to this hormone, showing reduced ABA-mediated stomatal closure and H2O2 accumulation in guard cells as compared to the wild-type (WT) plants. Furthermore, CuAO inhibitors, as well as the hydrogen peroxide (H2O2) scavenger N,N1-dimethylthiourea, reversed most of the ABA-induced stomatal closure in WT plants. Consistently, AtCuAOδ over-expressing transgenic plants display a constitutively increased stomatal closure and increased H2O2 production compared to WT plants. Our data suggest that AtCuAOδ is involved in the H2O2 production related to ABA-induced stomatal closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.