[1] The Martian seasonal dust cycle is examined with a general circulation model (GCM) that treats dust as a radiatively and dynamically interactive trace species. Dust injection is parameterized as being due to convective processes (such as dust devils) and modelresolved wind stresses. Size-dependent dust settling, transport by large-scale winds and subgrid scale diffusion, and radiative heating due to the predicted dust distribution are treated. Multiyear Viking and Mars Global Surveyor air temperature data are used to quantitatively assess the simulations. Varying the three free parameters for the two dust injection schemes (rate parameters for the two schemes and a threshold for wind-stress lifting), we find that the highly repeatable northern spring and summer temperatures can be reproduced by the model if the background dust haze is supplied by either convective lifting or by stress lifting with a very low threshold and a low injection rate. Dust injection due to high-threshold, high-rate stress lifting must be added to these to generate spontaneous and variable dust storms. In order to supply the background haze, widespread and ongoing lifting is required by the model. Imaging data provide a viable candidate mechanism for convective lifting, in the form of dust devils. However, observed nonconvective lifting systems (local storms, etc.) appear insufficiently frequent and widespread to satisfy the role. On the basis of the model results and thermal and imaging data, we suggest that the background dust haze on Mars is maintained by convective processes, specifically, dust devils. Combining the convective scheme and high-threshold stress lifting, we obtain a ''best fit'' multiyear simulation, which produces a realistic thermal state in northern spring and summer and, for the first time, spontaneous and interannually variable global dust storms.
A survey of dust devils using the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide‐ and narrow‐angle (WA and NA) images has been undertaken. The survey comprises two parts: (1) sampling of nine broad regions from September 1997 to July 2001 and (2) a focused seasonal monitoring of variability in the Amazonis region, an active dust devil site, from March 2001 to April 2004. For part 1, dust devils were identified in NA and WA images, and dust devil tracks were identified in NA images. Great spatial variability in dust devil occurrence is highlighted, with Amazonis Planitia being the most active region examined. Other active regions included Cimmerium, Sinai, and Solis. Numerous dust devil tracks, but very few dust devils, were observed in Casius. This may suggest dust devils here occur at local times other than that of the MGS orbit (∼2 pm). Alternatively, variations in surface properties may affect the ability of dust devils to leave visible tracks. The seasonal campaign within Amazonis shows a relatively smooth variation of dust devil activity with season, peaking in mid northern summer and falling to zero in southern spring and summer. This pattern of activity correlates well with the boundary layer maximum depth and hence the vigor of convection. Global maps of boundary layer depth and surface temperature do not predict that Amazonis should be especially active, potentially suggesting a role for mesoscale circulations. Measurement of observed dust devils yields heights of up to 8 km and widths in excess of 0.5 km.
[1] We report on the successful simulation of global dust storms in a general circulation model. The simulated storms develop spontaneously in multiyear simulations and exhibit significant interannual variability. The simulated storms produce dramatic increases in atmospheric dustiness, global-mean air temperatures, and atmospheric circulation intensity, in accord with observations. As with observed global storms, spontaneous initiation of storms in the model occurs in southern spring and summer, and there is significant interannual variability in storm development: years with no storms are interspersed with years with storms of various sizes and specific seasonal date of initiation. Our results support the idea that variable and spontaneous global dust storm behavior can emerge from a periodically forced system (the only forcing being the diurnal and seasonal cycles) when the dust injection mechanism involves an activation threshold. In our simulations, surface wind stresses associated with resolved, large-scale (>300 km) wind systems initiate the storms. These winds are generally associated with the seasonally migrating CO 2 cap boundary and sloping topography of the Hellas basin, thermal tides, and traveling waves. A very limited number of large storms begin with lifting along the frontal zones associated with traveling waves in the northern hemisphere. Explosive growth to global scales results from the intensification of the Hadley circulation and the activation of secondary dust-lifting centers.
Instrumented nanoindentation experiments, especially with sharp tips, are a well-established technique to measure the hardness and moduli values of a wide range of materials. However, and despite the fact that they can accurately delineate the onset of the elasto-plastic transition of solids, spherical nanoindentation experiments are less common. In this article we propose a technique in which we combine (i) the results of continuous stiffness measurements with spherical indenters – with radii of 1 μm and/or 13.5 μm, (ii) Hertzian theory, and (iii) Berkovich nanoindentations, to convert load/depth of indentation curves to their corresponding indentation stress–strain curves. We applied the technique to fused silica, aluminum, iron and single crystals of sapphire and ZnO. In all cases, the resulting indentation stress–strain curves obtained clearly showed the details of the elastic-to-plastic transition (i.e., the onset of yield, and, as important, the steady state hardness values that were comparable with the Vickers microhardness values obtained on the same surfaces). Furthermore, when both the 1 μm and 13.5 μm indenters were used on the same material, for the most part, the indentation stress–strain curves traced one trajectory. The method is versatile and can be used over a large range of moduli and hardness values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.