A highly sensitive, rapid assay method has been developed and validated for the estimation of abiraterone (ART) in rat and human plasma with liquid chromatography coupled to tandem mass spectrometry and electrospray ionization in the positive-ion mode. The assay procedure involves extraction of ART and phenacetin (internal standard, IS) from rat and human plasma with a simple protein precipitation extraction process. Chromatographic separation was achieved using an isocratic mobile (10 mm ammonium acetate:acetonitrile, 10:90, v/v) at a flow-rate of 0.70 mL/min on an Atlantis dC(18) column maintained at 40 °C with a total run time of 3.5 min. The MS/MS ion transitions monitored were 350.3 → 156.0 for ART and 180.2 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.20 ng/mL and the linearity range extended from 0.20 to 201 ng/mL. The intra- and inter-day precisions were in the ranges 2.39-10.4 and 4.84-9.53% in rat plasma and 3.82-10.8 and 6.97-8.94% in human plasma.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI-101 in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves extraction of JI-101 and phenacetin (internal standard, IS) from rat plasma with a solid-phase extraction process. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI-101 and 180.1 → 110.1 for IS. Method validation and sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 5.03 ng/mL and the linearity range extended from 5.03 to 2014 ng/mL. The intra-day and inter-day precisions were in the ranges of 1.17-19.6 and 3.09-10.4%, respectively. This method has been applied to a pharmacokinetic study of JI-101 in rats.
A novel, simple, specific, sensitive and reproducible high-performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of abiraterone (ART) in rat plasma. The analytical procedure involves extraction of ART and diclofenac (internal standard, IS) from rat plasma with a simple liquid-liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system with a Betasil C(18) column maintained at ambient room temperature and an isocratic mobile phase [acetonitrile-water-10 mm potassium dihydrogen phosphate (pH 3.0), 55:5:40, v/v/v] at a flow rate of 1.00 mL/min with a total run time of 10 min. The eluate was monitored using an UV detector set at 255 nm. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 93.4-3251 ng/mL (r(2) = 0.997). The intra- and inter-day precisions were 0.56-4.98 and 3.03-7.18, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study of ART in rats.
The results met the acceptance criteria. The validated method was successfully applied to characterize the pharmacokinetic parameters of Orteronel in rat plasma.
Orteronel (TAK-700) is a novel and selective inhibitor of CYP17A1, which is expressed in testicular, adrenal and prostate tumor tissues. Orteronel is currently in Phase-III clinical development for metastatic castration-resistant prostate patients. The objective of the study is to assess the permeability, metabolic stability (in various preclinical and human liver microsomes), identify the major CYPs involved in the metabolism of Orteronel. We have also studied the pharmacokinetics and excretion of Orteronel in Sprague-Dawley rats. Orteronel was found to be stable in various liver microsomes tested. The half-life (t ½) of Orteronel with intravenous (i.v.) route was found to be 1.65 ± 0.22 h. The clearance and volume of distribution by i.v. route for Orteronel were found to be 27.5 ± 3.09 mL/min/kg and 3.94 ± 0.85 L/kg, respectively. The absorption of Orteronel was rapid, with maximum concentrations of drug in plasma of 614 ± 76.4, 1,764 ± 166, 4,652 ± 300 and 17,518 ± 3,178 ng/mL attained at 0.38, 0.75, 0.50 and 0.83 h, respectively, after oral administration of Orteronel at 5, 10, 30 and 100 mg/kg as a suspension. In the dose proportional oral pharmacokinetic study, the mean t ½ by oral route was found to be ~3.5 h and bioavailability ranged between 69 and 89 %. The primary route of elimination for Orteronel is urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.